算术天才⑨与等差数列

Time Limit: 10 Sec  Memory Limit: 128 MB
[Submit][Status][Discuss]

Description

  算术天才⑨非常喜欢和等差数列玩耍。
  有一天,他给了你一个长度为n的序列,其中第i个数为a[i]。
  他想考考你,每次他会给出询问l,r,k,问区间[l,r]内的数从小到大排序后能否形成公差为k的等差数列。
  当然,他还会不断修改其中的某一项。
  为了不被他鄙视,你必须要快速并正确地回答完所有问题。
  注意:只有一个数的数列也是等差数列。

Input

  第一行包含两个正整数n,m,分别表示序列的长度和操作的次数。
  第二行包含n个整数,依次表示序列中的每个数a[i]。
  接下来m行,每行一开始为一个数op,
  若op=1,则接下来两个整数x,y,表示把a[x]修改为y。
  若op=2,则接下来三个整数l,r,k,表示一个询问。
  在本题中,x,y,l,r,k都是经过加密的,都需要异或你之前输出的Yes的个数来进行解密。

Output

输出若干行,对于每个询问,如果可以形成等差数列,那么输出Yes,否则输出No。

Sample Input

  5 3
  1 3 2 5 6
  2 1 5 1
  1 5 4
  2 1 5 1

Sample Output

  No
  Yes

HINT

  1<=n,m<=300000, 0<=a[i]<=10^9, 1<=x<=n,0<=y<=10^9, 1<=l<=r<=n, 0<=k<=10^9

Solution

  显然,如果可以组成等差数列,首项必定是区间最小值。这样我们就知道了要求的等差数列的首项公差

  一个首先的想法就是:我们判断一下区间和是否等于所要求的等差数列的和

  但是这样显然是不够的,那么怎么办呢?我们试想:能否求出所要求的等差数列的平方和

  显然公差为 1 的时候平方和公式计算,剩下公差不是 1 的时候我们轻易推一下式子即可。

  

  那么我们只要用线段树维护一下:区间最小值、区间和、区间平方和即可,资磁单点修改

  正确性不会证明啊,但是满足的概率应该挺大的吧qwq

Code

 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<queue>
using namespace std;
typedef long long s64; const int ONE = ;
const int INF = 1e9+; int n, T;
s64 a[ONE];
int opt, x, y, d;
int num; struct power
{
s64 sumx, sumxx, minx;
}Node[ONE * ], res; int get()
{
int res=,Q=;char c;
while( (c=getchar())< || c> )
if(c=='-')Q=-;
res=c-;
while( (c=getchar())>= && c<= )
res=res*+c-;
return res*Q;
} void Renew(int i)
{
int a = i<<, b = i<<|;
Node[i].sumx = Node[a].sumx + Node[b].sumx;
Node[i].sumxx = Node[a].sumxx + Node[b].sumxx;
Node[i].minx = min(Node[a].minx, Node[b].minx);
} void Build(int i, int l, int r)
{
Node[i].minx = INF;
if(l == r)
{
Node[i].minx = a[l];
Node[i].sumx = a[l];
Node[i].sumxx = a[l] * a[l];
return;
} int mid = l + r >> ;
Build(i<<, l, mid); Build(i<<|, mid+, r);
Renew(i);
} void Update(int i, int l, int r, int L, s64 x)
{
if(l > r) return;
if(L == l && l == r)
{
Node[i].minx = x;
Node[i].sumx = x;
Node[i].sumxx = x * x;
return;
} int mid = l + r >> ;
if(L <= mid) Update(i<<, l, mid, L, x);
else Update(i<<|, mid+, r, L, x);
Renew(i);
} void Query(int i, int l, int r, int L, int R)
{
if(L <= l && r <= R)
{
res.minx = min(res.minx, Node[i].minx);
res.sumx += Node[i].sumx;
res.sumxx += Node[i].sumxx;
return;
} int mid = l + r >> ;
if(L <= mid) Query(i<<, l, mid, L, R);
if(mid+ <= R) Query(i<<|, mid+, r, L, R);
} s64 Calc_sumx(s64 a0, s64 n, s64 d)
{
s64 an = a0 + (n-) * d;
return (a0 + an) * n / ;
} s64 Calc_sumxx(s64 a0, s64 n, s64 d)
{
s64 item1 = n * a0 * a0;
s64 item2 = * a0 * d * n * (n-) / ;
s64 item3 = d * d * (n * (n+) * (*n+) / - n*n);
return item1 + item2 + item3;
} int main()
{
n = get(); T = get();
for(int i=; i<=n; i++)
a[i] = get();
Build(, , n); while(T--)
{
opt = get();
x = get() ^ num; y = get() ^ num; if(opt == )
{
Update(, , n, x, y);
continue;
}
else
{
d = get() ^ num;
res.minx = INF;
res.sumx = res.sumxx = ;
Query(, , n, x, y); if(res.sumx == Calc_sumx(res.minx, y-x+, d))
if(res.sumxx == Calc_sumxx(res.minx, y-x+, d))
{
printf("Yes\n");
num++;
continue;
} printf("No\n");
}
} }

【BZOJ4373】算术天才⑨与等差数列 [线段树]的更多相关文章

  1. [BZOJ4373]算术天才⑨与等差数列(线段树)

    [l,r]中所有数排序后能构成公差为k的等差数列,当且仅当: 1.区间中最大数-最小数=k*(r-l) 2.k能整除区间中任意两个相邻数之差,即k | gcd(a[l+1]-a[l],a[l+2]-a ...

  2. bzoj4373 算术天才⑨与等差数列——线段树+set

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4373 一个区间有以 k 为公差的数列,有3个条件: 1.区间 mx - mn = (r-l) ...

  3. BZOJ4373: 算术天才⑨与等差数列(线段树 hash?)

    题意 题目链接 Sol 正经做法不会,听lxl讲了一种很神奇的方法 我们考虑如果满足条件,那么需要具备什么条件 设mx为询问区间最大值,mn为询问区间最小值 mx - mn = (r - l) * k ...

  4. 【BZOJ4373】算术天才⑨与等差数列 线段树+set

    [BZOJ4373]算术天才⑨与等差数列 Description 算术天才⑨非常喜欢和等差数列玩耍.有一天,他给了你一个长度为n的序列,其中第i个数为a[i].他想考考你,每次他会给出询问l,r,k, ...

  5. BZOJ 4373 算术天才⑨与等差数列 线段树+set(恶心死我了)

    mdzz,这道题重构了4遍,花了一个晚上... 满足等差数列的条件: 1. 假设min是区间最小值,max是区间最大值,那么 max-min+k(r−l) 2. 区间相邻两个数之差的绝对值的gcd=k ...

  6. BZOJ 4373算术天才⑨与等差数列(线段树)

    题意:给你一个长度为n的序列,有m个操作,写一个程序支持以下两个操作: 1. 修改一个值 2. 给出三个数l,r,k, 询问:如果把区间[l,r]的数从小到大排序,能否形成公差为k的等差数列. n,m ...

  7. BZOJ 4373: 算术天才⑨与等差数列 线段树

    Description 算术天才⑨非常喜欢和等差数列玩耍. 有一天,他给了你一个长度为n的序列,其中第i个数为a[i]. 他想考考你,每次他会给出询问l,r,k,问区间[l,r]内的数从小到大排序后能 ...

  8. bzoj 4373 算术天才⑨与等差数列——线段树+set

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4373 能形成公差为k的等差数列的条件:mx-mn=k*(r-l) && 差分 ...

  9. BZOJ4373 算术天才⑨与等差数列 【线段树】*

    BZOJ4373 算术天才⑨与等差数列 Description 算术天才⑨非常喜欢和等差数列玩耍. 有一天,他给了你一个长度为n的序列,其中第i个数为a[i]. 他想考考你,每次他会给出询问l,r,k ...

随机推荐

  1. 转 Redis集群技术及Codis实践

    转  Redis集群技术及Codis实践 转自 :http://blog.51cto.com/navyaijm/1637688 codis开源地址:https://github.com/CodisLa ...

  2. 【week2】 四则运算改进

    四则运算满足简单加减乘除,以及包含括号的复杂四则运算. 代码描述: 1.采用random随机数产生要参与计算的数字,以及运算符号 2.采用Scanner获取控制台输入的结果,与计算出来的结果进行比对, ...

  3. perf 是怎么计算调用栈的时间的?

    在我真个malloc的执行过程中共调用了8次的syswrite的系统调用,其中有两次来自于__lib_write, 两次来自于__memmove_avx_unaligned,然后__memmove_a ...

  4. Hessian矩阵【转】

    http://blog.sina.com.cn/s/blog_7e1ecaf30100wgfw.html 在数学中,海塞矩阵是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵,一元函数就是二阶导, ...

  5. 【bzoj4550】小奇的博弈 博弈论+dp

    题目描述 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色.最左边是白色棋子,最右边 是黑色棋子,相邻的棋子颜色不同.   小奇可以移动白色棋子,提比可以移动黑色的棋子, ...

  6. P2587 [ZJOI2008]泡泡堂

    题目描述 第XXXX届NOI期间,为了加强各省选手之间的交流,组委会决定组织一场省际电子竞技大赛,每一个省的代表队由n名选手组成,比赛的项目是老少咸宜的网络游戏泡泡堂.每一场比赛前,对阵双方的教练向组 ...

  7. [Leetcode] valid parentheses 有效括号对

    Given a string containing just the characters'(',')','{','}','['and']', determine if the input strin ...

  8. ZOJ3874 Permutation Graph 【分治NTT】

    题目链接 ZOJ3874 题意简述: 在一个序列中,两点间如果有边,当且仅当两点为逆序对 给定一个序列的联通情况,求方案数对\(786433\)取模 题解 自己弄了一个晚上终于弄出来了 首先\(yy\ ...

  9. BZOJ3495 PA2010 Riddle 【2-sat】

    题目链接 BZOJ3495 题解 每个城市都有选和不选两种情况,很容易考虑到2-sat 边的限制就很好设置了,主要是每个郡只有一个首都的限制 我们不可能两两之间连边,这样复杂度就爆炸了 于是乎就有了一 ...

  10. [POI2014]DOO-Around the world

    通过几年的努力,Byteasar最终拿到了飞行员驾驶证.为了庆祝这一事实,他打算买一架飞机并且绕Byteotia星球赤道飞行一圈.但不幸的是赤道非常长所以需要中途加几次油.现在已知赤道上面所有飞机场, ...