题意

给你长度为$n$的序列,序列中的每个元素$i$有一个区间限制$[l_i,r_i]$,你从中选出一个子序列,并给它们标号$x_i$,要求满足 $,∀i<j,x_i<x_j$,且$, ∀i,x_i∈[l_i,r_i]$。 问满足条件子序列的长度最长为多少?

其中$1\leq n\leq3\times 10^5\ 1\leq l_i\leq r_i\leq 10^9$

题解

不妨设$f[i][j]$表示已经选到第$i$个,其中最大值为$j$最多能选几个。

显然是开不下的...但是还记得$O(nlogn)$的$LIS$吗?它利用了二分栈!

所以我们不妨考虑设$f[i][j]$表示当前选到第$i$个,已经选了$j$个的末尾最小元素。

如果不选,显然$f[i+1][j]=f[i][j]$

如果$r[i+1]>f[i][j]$,那么,则有$f[i+1][j+1]=max(f[i][j]+1,l[i+1])$

不难发现可以用滚动数组滚掉第一维,所以第一个方程直接作废:

$ f[j+1]=max(f[j]+1,l[i+1]) $

但是时间还是$O(n^2)$的啊,枚举一个$i$,枚举一个$j$。

不急,咱们分开考虑,对于一个$l[i]<f<r[i]$

它的当前$dp$值可以直接$+1$,那么位置也将$+1$因为多选了一个嘛。

剩下的话,就是$f<l[i]$的情况,直接就等于$l[i]$了。

用一颗$FHQ-Treap$维护一下就行了。

$PS$:注意数组开两倍(最开始$n$个以及$dp$中的$n$个新节点)

#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm> template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
} const int N = 6e5 + 10, Inf = 1e9 + 7;
int n, l, r;
int rt, tot, val[N], add[N], lc[N], rc[N], pri[N]; inline int node(int x) { val[++tot] = x, pri[tot] = rand(); return tot; }
inline void pushdown(int o) {
if(add[o]) {
val[o] += add[o];
if(lc[o]) add[lc[o]] += add[o];
if(rc[o]) add[rc[o]] += add[o];
add[o] = 0;
}
}
int merge(int l, int r) {
if(!l || !r) return l + r;
pushdown(l), pushdown(r);
if(pri[l] < pri[r]) { rc[l] = merge(rc[l], r); return l; }
else { lc[r] = merge(l, lc[r]); return r; }
}
void split(int o, int k, int &l, int &r) {
if(!o) { l = r = 0; return ; } pushdown(o);
if(val[o] <= k) l = o, split(rc[o], k, rc[o], r);
else r = o, split(lc[o], k, l, lc[o]);
}
int min(int o) { pushdown(o); return lc[o] ? min(lc[o]) : val[o]; }
int calc(int o) {
if(!o) return 0; pushdown(o);
return calc(lc[o]) + calc(rc[o]) + (val[o] < Inf);
} int main () {
read(n), srand(19260817); int x, y, k, p;
for(int i = 1; i <= n; ++i) rt = merge(rt, node(Inf));
for(int i = 1; i <= n; ++i) {
read(l), read(r);
split(rt, l - 1, x, y), split(y, r - 1, k, y);
if(k) ++add[k];
split(y, min(y), p, y);
rt = merge(merge(merge(x, node(l)), k), y);
} printf("%d\n", calc(rt));
return 0;
}

CodeForces 809D Hitchhiking in the Baltic States(FHQ-Treap)的更多相关文章

  1. Codeforces 809D. Hitchhiking in the Baltic States

    Description 给出 \(n\) 个数 \(a_i\),每一个数有一个取值 \([l_i,r_i]\) ,你来确定每一个数,使得 \(LIS\) 最大 题面 Solution 按照平时做法,设 ...

  2. 【CF809D】Hitchhiking in the Baltic States(Splay,动态规划)

    [CF809D]Hitchhiking in the Baltic States(Splay,动态规划) 题面 CF 洛谷 题解 朴素\(dp\):设\(f[i][j]\)表示当前考虑到第\(i\)个 ...

  3. 可持久化treap(FHQ treap)

    FHQ treap 的整理 treap = tree + heap,即同时满足二叉搜索树和堆的性质. 为了使树尽可能的保证两边的大小平衡,所以有一个key值,使他满足堆得性质,来维护树的平衡,key值 ...

  4. BZOJ3159: 决战(FHQ Treap)

    传送门: 解题思路: 算是补坑了,这题除了Invert以外就可以树剖线段树解决了. 考虑Invert操作,延续先前树链剖分的做法,考虑先前算法的瓶颈. 最暴力的方法是暴力交换权值,然而这种方法忽略了当 ...

  5. CF 809D Hitchhiking in the Baltic States——splay+dp

    题目:http://codeforces.com/contest/809/problem/D 如果值是固定的,新加入一个值,可以让第一个值大于它的那个长度的值等于它. 如今值是一段区间,就对区间内的d ...

  6. bzoj千题计划222:bzoj2329: [HNOI2011]括号修复(fhq treap)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2329 需要改变的括号序列一定长这样 :)))((( 最少改变次数= 多余的‘)’/2 [上取整] + ...

  7. bzoj千题计划221:bzoj1500: [NOI2005]维修数列(fhq treap)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1500 1.覆盖标记用INF表示无覆盖标记,要求可能用0覆盖 2.代表空节点的0号节点和首尾的两个虚拟 ...

  8. 洛谷P3391 【模板】文艺平衡树(Splay)(FHQ Treap)

    题目背景 这是一道经典的Splay模板题——文艺平衡树. 题目描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转一个区间,例如原有序序列是5 4 3 2 1, ...

  9. LOJ#120. 持久化序列(FHQ Treap)

    题面 传送门 题解 可持久化\(Treap\)搞一搞 //minamoto #include<bits/stdc++.h> #define R register #define inlin ...

随机推荐

  1. Item 12 考虑实现Comparable接口

    1.Comparable接口,用来做什么. 2.判定类实现的Comparable接口是否正确的方法. 3.不要扩展一个已经实现了Comparable接口的类来增加用于比较的值组件.     1.Com ...

  2. Android蓝牙通信总结

    这篇文章要达到的目标: 1.介绍在Android系统上实现蓝牙通信的过程中涉及到的概念. 2.在android系统上实现蓝牙通信的步骤. 3.在代码实现上的考虑. 4.例子代码实现(手持设备和蓝牙串口 ...

  3. 【STSRM10】数学上来先打表

    [算法]DP+数学计数 [题意]给出n个点(不同点之间有区别),求出满足下列条件的连边(双向边)方案(对1004535809取模): 1.每条边连接两个不同的点,每两个点之间至多有一条边. 2.不存在 ...

  4. 代理设计模式iOS开发Demo(示例程序)源代码

        iOS程序源代码下载链接:03-代理设计模式.zip28.3 KB // main.m // //  main.m //  03-代理设计模式 // //  Created by apple ...

  5. new操作符的内部运行解析

    在加上new操作符,我们就能完成传统面向对象的class + new的方式创建对象,在Javascript中,我们将这类方式成为Pseudoclassical. 基于上面的例子,我们执行如下代码   ...

  6. Windows下基于python3使用word2vec训练中文维基百科语料(三)

    对前两篇获取到的词向量模型进行使用: 代码如下: import gensim model = gensim.models.Word2Vec.load('wiki.zh.text.model') fla ...

  7. Apache的Commons Lang和BeanUtils

    1.字符串的空判断 //isEmpty System.out.println(StringUtils.isEmpty(null));      // true System.out.println(S ...

  8. 【Python项目】使用Face++的人脸识别detect API进行本地图片情绪识别并存入excel

    准备工作 首先,需要在Face++的主页注册一个账号,在控制台去获取API Key和API Secret. 然后在本地文件夹准备好要进行情绪识别的图片/相片. 代码 介绍下所使用的第三方库 ——url ...

  9. Vue组件-组件的事件

    自定义事件 通过prop属性,父组件可以向子组件传递数据,而子组件的自定义事件就是用来将内部的数据报告给父组件的. <div id="app3"> <my-com ...

  10. service XXX start启动报start: Rejected send message, 1 matche

    转,原文地址:http://blog.sina.com.cn/s/blog_56d8ea9001018w1l.html [问题]start: Rejected send messag现象:crifan ...