\(\mathtt{CF 687D}\)

\(\mathcal{Description}\)

给你一个图有 \(n\) 个点 \((1 \leq n \leq 10^3)\) 和 \(m\) 条边 \((1 \leq m \leq \dfrac{n*(n-1)}{2})\) ,边有边权。给定 \(q\) 组询问,每次询问给定 \(l\) 和 \(r\),用编号为 \([l,r]\) 去构成图,使得两边端点在同一个部分的边的最大值最小。

\(\mathcal{Solution}\)

看到题第一反应是线段树,看看标签好像不太对劲的样子,考虑简单点的做法。

考虑如果构成的图是二分图的话,不可能存在一条边的两个端点在同一部分,所以可以得出构成的图一定不是二分图,于是题目可以转化成找奇环的最小变的最大值。

我们可以把边按权值从大到小排序,从最大的开始,不断加边,如果当前构成的图还是一个二分图,则继续加边,如果不是,就是最后我们要构成的图,所以就可以用带权二分图来做。

\(\mathcal{Code}\)

#include<bits/stdc++.h>
using namespace std; const int N = 5e5 + 10; int n, m, q;
int fa[N], fa1[N]; struct Node {
int u, v, w, id;
} edge[N << 1]; inline int read() {
int x = 0, k = 1; char c = getchar();
for (; c < 48 || c > 57; c = getchar()) k ^= (c == '-');
for (; c >= 48 && c <= 57; c = getchar()) x = x * 10 + (c ^ 48);
return k ? x : -x;
} inline bool cmp(Node x, Node y) {
return x.w > y.w;
} int find(int x) {
return (fa[x] == x) ? x : (fa[x] = find(fa[x]));
} inline void match(int x, int y) {
int fx = find(x), fy = find(y);
if (fx == fy)
return;
if (fa1[fx] < fa1[fy]) swap(fx, fy);
fa[fy] = fa[fx];
if (fa1[fx] == fa1[fy])
fa1[fx]++;
return;
} inline int query(int l, int r) {
for (int i = 1; i <= m; i++) {
if (edge[i].id < l || edge[i].id > r)
continue;
if (find(edge[i].u) != find(edge[i].v)) {
match(edge[i].u, edge[i].v + n);
match(edge[i].u + n, edge[i].v);
}
else
return edge[i].w;
}
return -1;
} int main() {
n = read(), m = read(), q = read();
for (int i = 1; i <= m; i++)
edge[i].u = read(), edge[i].v = read(), edge[i].w = read(), edge[i].id = i;
std::sort(edge + 1, edge + 1 + m, cmp);
for (int i = 1; i <= 2 * n; i++)
fa[i] = i, fa1[i] = 0;
for (int l = 0, r = 0, ans = -1; q--; ) {
l = read(), r = read();
printf("%d\n", query(l, r));
for (int i = 1; i <= 2 * n; i++)
fa[i] = i, fa1[i] = 0;
}
return 0;
}

CF687D Dividing Kingdom II的更多相关文章

  1. 【CF687D】Dividing Kingdom II 线段树+并查集

    [CF687D]Dividing Kingdom II 题意:给你一张n个点m条边的无向图,边有边权$w_i$.有q个询问,每次给出l r,问你:如果只保留编号在[l,r]中的边,你需要将所有点分成两 ...

  2. Codeforces Round #360 (Div. 1) D. Dividing Kingdom II 并查集求奇偶元环

    D. Dividing Kingdom II   Long time ago, there was a great kingdom and it was being ruled by The Grea ...

  3. Codeforces Round #360 (Div. 1) D. Dividing Kingdom II 暴力并查集

    D. Dividing Kingdom II 题目连接: http://www.codeforces.com/contest/687/problem/D Description Long time a ...

  4. CodeForces - 687D: Dividing Kingdom II (二分图&带权并查集)

    Long time ago, there was a great kingdom and it was being ruled by The Great Arya and Pari The Great ...

  5. codeforces 687D Dividing Kingdom II 带权并查集(dsu)

    题意:给你m条边,每条边有一个权值,每次询问只保留编号l到r的边,让你把这个图分成两部分 一个方案的耗费是当前符合条件的边的最大权值(符合条件的边指两段点都在一个部分),问你如何分,可以让耗费最小 分 ...

  6. codeforces泛做..

    前面说点什么.. 为了完成日常积累,傻逼呵呵的我决定来一发codeforces 挑水题 泛做.. 嗯对,就是泛做.. 主要就是把codeforces Div.1的ABCD都尝试一下吧0.0.. 挖坑0 ...

  7. Codeforces Round #158 (Div. 2)

    A. Adding Digits 枚举. B. Ancient Prophesy 字符串处理. C. Balls and Boxes 枚举起始位置\(i\),显然\(a_i \le a_j, 1 \l ...

  8. [ACM] hdu 1025 Constructing Roads In JGShining's Kingdom (最长递增子序列,lower_bound使用)

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  9. HDU 1025 Constructing Roads In JGShining's Kingdom(二维LIS)

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

随机推荐

  1. 使用canvas时, 如何用相对单位(rem, rpx)来适配不同机型

    使用canvas的api时, 使用的都是绝对数值, 如: 方法传参是坐标位置,不带单位,如ctx.translate(10,10); 那么此时, 我就需要将rem或rpx 转换成 px; 首先, 获取 ...

  2. Mongo导出、导入

    1.mongodb 数据导出: connection options: /h, /host:<hostname> mongodb host to connect to (setname/h ...

  3. 1.Configuration

    1.Configuration(public sealed class Configuration) 定义:表示适用于特定计算机.应用程序或资源的配置文件. 此类不能被继承 获取实例: Configu ...

  4. boost库:函数对象

    函数对象是指那些可以被传入到其它函数或是从其它函数返回的一类函数. 1. boost::bind bind提供了一个机制,是函数与几乎不限数量的参数一起使用,就可以得到指定签名的函数.bind会复制传 ...

  5. 匹配Luhn算法:可用于检测银行卡卡号

    匹配Luhn算法:可用于检测银行卡卡号 /** * http://www.cnblogs.com/JnKindle/p/5798974.html * * 匹配Luhn算法:可用于检测银行卡卡号 * * ...

  6. Android中通过反射获取资源Id(特别用在自己定义一个工具将其打成.jar包时,特别注意资源的获取)

    在将自己写的工具打成.jar包的时候,有时候会需要引用到res中的资源,这时候不能将资源一起打包,只能通过反射机制动态的获取资源. /** * 反射得到组件的id号 */ public static ...

  7. 探索Redis设计与实现1:Redis 的基础数据结构概览

    本文转自互联网 本系列文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查看 https://github.com/h2pl/Java-Tutorial ...

  8. (转)深入剖析Java中的装箱和拆箱

    转:https://www.cnblogs.com/dolphin0520/p/3780005.html 深入剖析Java中的装箱和拆箱 自动装箱和拆箱问题是Java中一个老生常谈的问题了,今天我们就 ...

  9. 12. MySQL简单使用

    关于MySQL的使用,大家可以去网上看相关教程,但是为了保证阅读的连贯性,这里会做简单介绍. 创建数据库 我们双击刚刚新建的数据库,然后双击mysql,点击新建查询,可以在编辑器里面输入一些mysql ...

  10. 20140914 1到N自然数排序

    1.关于一道1到N自然数排序的华为面试题 http://blog.csdn.net/hongyuan19/article/details/1887656 为什么想进入华为 你对华为了解多少? 华为给我 ...