问题描述

众所周知,二叉查找树的形态和键值的插入顺序密切相关。准确的讲:1、空树中加入一个键值k,则变为只有一个结点的二叉查找树,此结点的键值即为k;2、在非空树中插入一个键值k,若k小于其根的键值,则在其左子树中插入k,否则在其右子树中插入k。

我们将一棵二叉查找树的键值插入序列称为树的生成序列,现给出一个生成序列,求与其生成同样二叉查找树的所有生成序列中字典序最小的那个,其中,字典序关系是指对两个长度同为n的生成序列,先比较第一个插入键值,再比较第二个,依此类推。

输入格式

第一行,一个整数,n,表示二叉查找树的结点个数。第二行,有n个正整数,k1到kn,表示生成序列,简单起见,k1~kn为一个1到n的排列。

输出格式

一行,n个正整数,为能够生成同样二叉查找数的所有生成序列中最小的。

样例输入

4

1 3 4 2

样例输出

1 3 2 4

解析

根据题目要求,我们可以这么想:字典序最小的构法肯定是从小到大插入,但最后构出来的树会是一条链。我们可以设一个节点有两个关键值:一是本身的值,二是第几个插入。我们需要这棵树越往上第二关键字越小,即每个节点的第二关键字小于自己的两个儿子(不然不满足原树的顺序),整棵树的第一关键字又要满足二叉搜索树,这就是一棵笛卡尔树。

笛卡尔树的构造方法是:首先把所有节点按照第一关键字排序,这样构造出来的树就是一条在最右边的链。用一个栈保存最右边链的节点。对于每一个插入的节点i,都在栈中找到第一个第二关键字比自己小的点,并将i作为这个点的右儿子,而原来接的右链接到i的左儿子处,并从栈中弹出。最后中序遍历整棵树的序列即为答案。

代码

#include <iostream>
#include <cstdio>
#include <algorithm>
#define N 100002
using namespace std;
struct node{
int dat,key;
}a[N];
int n,i,fa[N],dat[N],key[N],son[N][2],s[N],top;
int my_comp(const node &x,const node &y)
{
return x.dat<y.dat;
}
void insert(int x,int f,int p)
{
fa[x]=f;
son[f][p]=x;
}
void dfs(int x)
{
if(!x) return;
cout<<dat[x]<<' ';
dfs(son[x][0]);
dfs(son[x][1]);
}
int main()
{
cin>>n;
for(i=1;i<=n;i++){
cin>>a[i].dat;
a[i].key=i;
}
sort(a+1,a+n+1,my_comp);
for(i=1;i<=n;i++){
int last=0;
while(top>0&&key[s[top]]>a[i].key) last=top,top--;
dat[i]=a[i].dat;
key[i]=a[i].key;
insert(i,s[top],1);
insert(s[last],i,0);
s[++top]=i;
}
dfs(son[0][1]);
cout<<endl;
return 0;
}

[洛谷 P1377] TJOI2011 树的序的更多相关文章

  1. 洛谷 P1377 [TJOI2011]树的序 解题报告

    P1377 [TJOI2011]树的序 题目描述 众所周知,二叉查找树的形态和键值的插入顺序密切相关.准确的讲:1.空树中加入一个键值\(k\),则变为只有一个结点的二叉查找树,此结点的键值即为\(k ...

  2. 单调队列优化O(N)建BST P1377 [TJOI2011]树的序

    洛谷 P1377 [TJOI2011]树的序 (单调队列优化建BST 链接 题意分析 本题思路很简单,根据题意,我们利用所给的Bst生成序将Bst建立起来,然后输出该BST的先序遍历即可: 但,如果我 ...

  3. Luogu P1377 [TJOI2011]树的序:离线nlogn建二叉搜索树

    题目链接:https://www.luogu.org/problemnew/show/P1377 题意: 有一棵n个节点的二叉搜索树. 给出它的插入序列,是一个1到n的排列. 问你使得树的形态相同的字 ...

  4. 洛谷1087 FBI树 解题报告

    洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...

  5. [TJOI2011]树的序(贪心,笛卡尔树)

    [TJOI2011]树的序 题目描述 众所周知,二叉查找树的形态和键值的插入顺序密切相关.准确的讲:1.空树中加入一个键值k,则变为只有一个结点的二叉查找树,此结点的键值即为k:2.在非空树中插入一个 ...

  6. 洛谷P3018 [USACO11MAR]树装饰Tree Decoration

    洛谷P3018 [USACO11MAR]树装饰Tree Decoration树形DP 因为要求最小,我们就贪心地用每个子树中的最小cost来支付就行了 #include <bits/stdc++ ...

  7. 洛谷P3703 [SDOI2017]树点涂色(LCT,dfn序,线段树,倍增LCA)

    洛谷题目传送门 闲话 这是所有LCT题目中的一个异类. 之所以认为是LCT题目,是因为本题思路的瓶颈就在于如何去维护同颜色的点的集合. 只不过做着做着,感觉后来的思路(dfn序,线段树,LCA)似乎要 ...

  8. NOIP2017提高组Day2T3 列队 洛谷P3960 线段树

    原文链接https://www.cnblogs.com/zhouzhendong/p/9265380.html 题目传送门 - 洛谷P3960 题目传送门 - LOJ#2319 题目传送门 - Vij ...

  9. 洛谷P3372线段树1

    难以平复鸡冻的心情,虽然可能在大佬眼里这是水题,但对蒟蒻的我来说这是个巨大的突破(谢谢我最亲爱的lp陪我写完,给我力量).网上关于线段树的题解都很玄学,包括李煜东的<算法竞赛进阶指南>中的 ...

随机推荐

  1. 洛谷P4124 手机号码

    传送 这题也就是条件限制多了点,也没有别的,套板子就好了 注意这里没有前导零,所以第一位是从1开始填 看注释叭 #include<iostream> #include<cstdio& ...

  2. 十四、python字典中的方法汇总

    '''1.访问.修改,删除字典中的值:''' dict={'a':'11','b':'22','c':'33','d':'44'}print dict['a'],dict['d'] #访问dict[' ...

  3. 安装U盘启动ferdora-22-fce笔记

    如何格式化为fat? windows图形界面格式化, 选项中没有fat, 只有fat32和exfat两种upan格式 Fat就是 传统的FAT16 要格式化为fat, 需要使用cmd的format命令 ...

  4. 【tensorflow使用笔记三】:tensorflow tutorial中的源码阅读

    https://blog.csdn.net/victoriaw/article/details/61195620#t0 input_data 没用的另一种解决方法:tensorflow1.8版本及以上 ...

  5. 基于Skyline的web开发(6.x)

    多窗口对比 一个页面加载多个TerraExplorer3DWindow和SGWorld等只有第一个能用(即使用iframe也是一样) 所以我决定打开两个新页面实现多窗口对比,然后我在<主页面&g ...

  6. 003-js-MD5

    源码 /* global define */ ;(function ($) { 'use strict' /* * Add integers, wrapping at 2^32. This uses ...

  7. 转战 rocketmq

    接触 kafka 有一段时间了,一个人的力量实在有限,国内 rocketmq 的生态确实更好,决定换方向. rocketmq 文档地址:http://rocketmq.cloud/zh-cn/docs ...

  8. POI向Excel中写入数据及追加数据

    import org.apache.poi.xssf.usermodel.XSSFCell; import org.apache.poi.xssf.usermodel.XSSFRow; import ...

  9. IntelliJ IDEA的常用设置

    1.设置IDEA主题样式 ①设置方法: ②效果:设置为Darcula之后整体的风格就是暗黑主题,如上图. 2.设置编辑区主题 ①设置方法: 注:由于IDEA自带的编辑区主题比较少,想要更多的编辑区主题 ...

  10. python函数及调用

    python的函数是一段重复多次可调用的代码,依据python的函数,我们可以利用函数式的编程,来减少代码的重复. 在本章节中,详细的介绍python的函数,以及python的函数式编程的与众不同,函 ...