CodeForces - 1038D (线性DP)
题目:https://codeforces.com/problemset/problem/1038/D
题意:给你n个数字,每个数字可以吃左右两边的数,然后吃完后自己变成 a[i]-a[i+1]或者a[i]-a[i-1],然后问你最后只剩一个数的时候最大可能的值是多少
思路:我们首先想是由哪一个数会留到最后,那他肯定会吃掉左边的数和右边的数,而如果要使当前数字尽量大,那么就要使左右两边的数字尽量小,我们要确定左边右边的数字尽量小的话,因为有负数的关系,我们每一步都要记录当前格子从左到右的最大值和最小值,然后同理再记录一个从右到左的,然后枚举哪一个留到最后,减去前缀最小和后缀最小即可
#include<bits/stdc++.h>
#define maxn 500005
#define mod 1000000007
using namespace std;
typedef long long ll;
ll n,a[maxn];
ll dp1[maxn][];
ll dp2[maxn][];
int main(){
cin>>n;
for(int i=;i<=n;i++){
cin>>a[i];
}
int q;
dp1[n][]=a[n];dp1[n][]=a[n];
dp2[][]=a[];dp2[][]=a[];
for(int i=n-;i>=;i--){
dp1[i][]=max(max(a[i]-dp1[i+][],a[i]+dp1[i+][]),dp1[i+][]-a[i]);
dp1[i][]=min(min(a[i]-dp1[i+][],a[i]+dp1[i+][]),dp1[i+][]-a[i]);
}
for(int i=;i<=n-;i++){
dp2[i][]=max(max(a[i]-dp2[i-][],a[i]+dp2[i-][]),dp2[i-][]-a[i]);
dp2[i][]=min(min(a[i]-dp2[i-][],a[i]+dp2[i-][]),dp2[i-][]-a[i]);
}
ll mx=a[]-dp1[][];
for(int i=;i<=n;i++){
mx=max(mx,a[i]-dp1[i+][]-dp2[i-][]);
}
cout<<mx;
}
/*
5
-14 -2 0 -19 -12
47
*/
CodeForces - 1038D (线性DP)的更多相关文章
- Codeforces 176B (线性DP+字符串)
题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...
- CodeForces - 1051D (线性DP)
题目:https://codeforces.com/problemset/problem/1051/D 题意:一个2行n列的矩形,上面有黑白块,然后问你怎么布置才能有k个连通块,问有多少种方案数 思路 ...
- [CodeForces - 1272D] Remove One Element 【线性dp】
[CodeForces - 1272D] Remove One Element [线性dp] 标签:题解 codeforces题解 dp 线性dp 题目描述 Time limit 2000 ms Me ...
- [线性DP][codeforces-1110D.Jongmah]一道花里胡哨的DP题
题目来源: Codeforces - 1110D 题意:你有n张牌(1,2,3,...,m)你要尽可能多的打出[x,x+1,x+2] 或者[x,x,x]的牌型,问最多能打出多少种牌 思路: 1.三组[ ...
- LightOJ1044 Palindrome Partitioning(区间DP+线性DP)
问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...
- hdu1712 线性dp
//Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...
- 动态规划——线性dp
我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...
- POJ 2479-Maximum sum(线性dp)
Maximum sum Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 33918 Accepted: 10504 Des ...
- poj 1050 To the Max(线性dp)
题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...
随机推荐
- 文件上传: FileItem类、ServletFileUpload 类、DiskFileItemFactory类
文件上传: ServletFileUpload负责处理上传的文件数据,并将表单中每个输入项封装成一个FileItem对象中, 在使用ServletFileUpload对象解析请求时需要根据DiskFi ...
- 找不到/lib/modules/../build文件夹
:解决了make: *** /lib/modules/3.2.0-4-amd64/build: 没有那个文件或目录的问题,更新一下软件列表,然后sudo apt-get install linux-h ...
- 20190815 On Java8 第五章 控制流
第五章 控制流 迭代语句 逗号操作符 在 Java 中逗号运算符(这里并非指我们平常用于分隔定义和方法参数的逗号分隔符)仅有一种用法:在 for 循环的初始化和步进控制中定义多个变量.我们可以使用逗号 ...
- xmake 描述语法和作用域详解
xmake的工程描述文件xmake.lua虽然基于lua语法,但是为了使得更加方便简洁得编写项目构建逻辑,xmake对其进行了一层封装,使得编写xmake.lua不会像些makefile那样繁琐 基本 ...
- 利用正则表达式模拟计算器进行字符串的计算实现eval()内置函数功能
代码感觉有点绕,刚开始学习python,相关知识点还没全部学习到,还请各位大神多多指教 import re # 定义乘法 def mul(string): mul1 = re.search('-?\d ...
- package和import语句_4
J2SDK中主要的包介绍 java.lang—包含一些Java语言的核心类,如String.Math.Integer.System和 Thread,提供常用功能. java.awt—包含了构成抽象 ...
- 洛谷 P1589 泥泞路 & 2019青岛市竞赛(贪心)
题目链接 https://www.luogu.org/problemnew/show/P1589 解题思路 用结构体存下每一段泥泞路的左端点和右端点,然后用sort根据左端点排序,采用贪心的思想,从左 ...
- [CodeForces 52C]Circular RMQ
题目传送门 评分:省选/NOI-,难度:普及+/提高 这题真的和RMQ没有半点关系,只需要一个裸的线段树,连pushdown都不需要,只需要两种操作:区间修改和区间求最小值,在回溯时加上标记即可,唯一 ...
- 如何写一个简单的基于 Qt 框架的 HttpServer ?
httpserver.h #ifndef HTTPSERVER_H #define HTTPSERVER_H #include <QObject> #include <QtCore& ...
- jquery动态加载select选项
$("#selectid").get(0).options.add(new Option(json数据))