题面

>CF传送门<

>洛谷传送门<

解法

显而易见,对于一个数\(a_i\),若果它出现在\(f\)序列中,必定\(a_i\)之前的元素要小于\(a_i\),我们设\(cnt_i\)为序列\(a\)中小于\(i\)的元素,

那么得到\(\sum_{i=1}^n a_i \times (\sum_{j=1}^{cnt_i+1} \frac{cnt_i!}{(j-1)!\times(cnt_i-j+1)!} \times (j - 1)! \times (n-j)!)\)

化简得\(\sum_{i=1}^n a_i \times (\sum_{j=1}^{cnt_i+1} \frac{cnt_i!}{(cnt_i-j+1)!} \times (n-j)!)\)

然后提出\(cnt_i!\)得\(\sum_{i=1}^n a_i \times cnt_i! \times ( \sum_{j=1}^{cnt_i+1} \frac{(n-j)!}{(cnt_i-j+1)!})\)

提取一个\((n-cnt_i-1)!\)得\(\sum_{i=1}^n a_i \times cnt_i! \times (n-cnt_i-1) \times ( \sum_{j=1}^{cnt_i+1} (^{n-j}_{n-cnt_i-1}))\)

又可得\(\sum_{i=1}^n a_i \times cnt_i! \times (n-cnt_i-1) \times (^n_{n-cnt_i})\)

所以答案为\(\sum_{i=1}^n \frac{a_i*n!}{n-l_i}\)

代码

#include <cstdio>
#include <algorithm>
#define ll long long
#define MOD 1000000007 using namespace std; ll jc[1000005], jcr[1000005];
ll a[1000005]; int main(){
int n; scanf("%d", &n);
for(ll i = 1; i <= n; ++i)
scanf("%lld", &a[i]);
jc[0] = jcr[n + 1] = 1;
for(int i = 1; i <= n + 1; ++i)
jc[i] = (jc[i - 1] * i) % MOD;
for(int i = n; i >= 1; --i)
jcr[i] = (jcr[i + 1] * i) % MOD;
sort(a + 1, a + n + 1);
ll ans = 0; int cur_val = 0, cnt = 0;
for(int i = 1; a[i] != a[n]; ++i){
(a[i] == a[i - 1]) ? (++cnt) : (cur_val += cnt, cnt = 1);
ans += (((jc[n - cur_val - 1] * jcr[n - cur_val + 1]) % MOD) * a[i]) % MOD, ans %= MOD;
}
printf("%lld", ans); return 0;
}

[CF938E]Max History题解的更多相关文章

  1. 【计数】cf938E. Max History

    发现有一种奇怪的方法不能快速预处理? 复习一下常见的凑组合数的套路 You are given an array a of length n. We define fa the following w ...

  2. CodeForces 938E Max History 题解

    参考自:https://blog.csdn.net/dreaming__ldx/article/details/84976834 https://blog.csdn.net/acterminate/a ...

  3. Hdoj 1003.Max Sum 题解

    Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum ...

  4. Codeforces 938E Max History:排列 + 逆元【考虑单个元素的贡献】

    题目链接:http://codeforces.com/problemset/problem/938/E 题意: 定义f(a): 初始时f(a) = 0, M = 1. 枚举i = 2 to n,如果a ...

  5. luoguP3128 [USACO15DEC]最大流Max Flow 题解(树上差分)

    链接一下题目:luoguP3128 [USACO15DEC]最大流Max Flow(树上差分板子题) 如果没有学过树上差分,抠这里(其实很简单的,真的):树上差分总结 学了树上差分,这道题就极其显然了 ...

  6. 2018.12.12 codeforces 938E. Max History(组合数学)

    传送门 唉最开始居然把题给看错了. 其实是组合数学傻逼题呢. 题意简述:给出一个数列,定义一个与数列有关的fff函数,fff函数定义如下: 首先f=0,M=1f=0,M=1f=0,M=1,一直重复如下 ...

  7. Max History CodeForces - 938E (组合计数)

    You are given an array a of length n. We define fa the following way: Initially fa = 0, M = 1; for e ...

  8. CF1083C Max Mex 线段树

    题面 CF1083C Max Mex 题解 首先我们考虑,如果一个数x是某条路径上的mex,那么这个数要满足什么条件? 1 ~ x - 1的数都必须出现过. x必须没出现过. 现在我们要最大化x,那么 ...

  9. Educational Codeforces Round 38 部分题解

    D. Buy a Ticket 分析 建一个源点,连向所有结点,边的花费为那个结点的花费,图中原有的边花费翻倍,最后跑一遍最短路即可. code #include<bits/stdc++.h&g ...

随机推荐

  1. spark 怎么去连接 ElasticSearch

    https://stackoverflow.com/questions/52659109/cannot-read-from-elasticsearch-using-pyspark https://st ...

  2. ESP32 Ethernet to wifi

    参考网址 https://github.com/espressif/esp-iot-solution/tree/master/examples/eth2wifi RMII PHY Wiring(RMI ...

  3. mysql数据库问题———登录进去无法操作显示You must reset your password using ALTER USER statement before executing this statement

    linux操作mysql数据库,可以登陆进去,但是操作所有命令都显示You must reset your password using ALTER USER statement before exe ...

  4. python学习-第四天补充-面向对象

    python学习-第四天补充-面向对象 python 私有 --name mangling(名字修改.名字) 在命名时,通过使用两个下划线作为开头,可以使得这个变量或者函数编程私有的,但是这个其实的p ...

  5. C++ 线性表实现

    List.h #pragma once #include "targetver.h" #include <stdio.h> #include <tchar.h&g ...

  6. 【SSL1786】麻将游戏

    题目大意: 给出一个矩阵,查询其中两个点连通线段数 正文: 看这题好眼熟... 实质和这道题是一模一样的,只不过由一条询问升级到多条询问.

  7. 【IO流】FileInputStream FileOutputStream BufferInputStream BufferOutputStream

    FileInputStream IO流用来处理设备之间的数据传输. Java对数据的操作是通过流的方式. Java用于操作流的类都在IO包中. 流按流向分为两种:输入流,输出流. 流按操作类型分为两种 ...

  8. MySQL explain,Extra分析(转)

    explain结果中有一个Extra字段,对分析与优化SQL有很大的帮助 数据准备: create table user ( id int primary key, name varchar(20), ...

  9. RNN, LSTM, GRU cells

    项目需要,先简记cell,有时间再写具体改进原因 RNN cell LSTM cell: GRU cell: reference: 1.https://towardsdatascience.com/a ...

  10. k3 cloud注册插件的时候提示,请选择一个有效的插件程序集

    插件类的访问类型需要是public类型的,由于你的插件类没有标记为public类型,所以注册的时候并没有发现有插件,就是下面的单据体没有加载出数据.标记public之后,下面会有你的插件,然后选择对应 ...