博弈论 x
——关于博弈论
四道例题带你走进博弈论~
(考虑必败态,必胜态)
Ps:要理解这种思想,首先要明白什么叫必败态。说简单点,必败态就是“在对方使用最优策略时,无论做出什么决策都会导致失败的局面”。其他的局面称为胜态,值得注意的是在胜态下做出错误的决策也有可能导致失败。此类博弈问题的精髓就是让对手永远面对必败态。 必败态和胜态有着如下性质: 1、若面临末状态者为获胜则末状态为胜态否则末状态为必败态。 2、一个局面是胜态的充要条件是该局面进行某种决策后会成为必败态。 3、一个局面是必败态的充要条件是该局面无论进行何种决策均会成为胜态 这三条性质正是博弈树的原理,但博弈树是通过计算每一个局面是胜态还是必败态来解题,这样在局面数很多的情况下是很难做到的,此时,我们可以利用人脑的推演归纳能力找到必败态的共性,就可以比较好的解决此类问题了。
1)
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 10000)
第2 - T + 1行:每行2个数N,K。中间用空格分隔。(1 <= N,K <= 10^9)
共T行,如果A获胜输出A,如果B获胜输出B。
4
3 2
4 2
7 3
8 3
#include <iostream>
#include <cstdio> using namespace std; int n,k,t; int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&k);
if(n<k)///此时需要特判n是否比k大
{///如果小于,A获胜(可以自己试试)
printf("A\n");
continue;
}
else
{
if(n%(k+)==)
{
printf("B\n");
continue;
}
else
{
printf("A\n");
continue;
}
}
}
return ;
}
1
2)
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 10000)
第2 - T + 1行:每行1个数N。(1 <= N <= 10^9)
共T行,如果A获胜输出A,如果B获胜输出B。
3
2
3
4
B
A
A
#include <iostream>
#include <cstdio> using namespace std; int n,k,t; int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
if(n%== || n%==)///规律
{
printf("B\n");
continue;
}
else
{
printf("A\n");
continue;
}
}
return ;
}
2
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 1000)
第2 - T + 1行:每行1个数N。(1 <= N <= 10^1000)
共T行,如果A获胜输出A,如果B获胜输出B。
3
2
3
4
A
B
A
#include <iostream>
#include <cstdio> using namespace std; long long t,wsum;
string n; int main()
{
scanf("%lld",&t);
int len;
for(int i=;i<=t;i++)
{
cin>>n;
wsum=;///清零!!!
len=n.length();
for(int j=;j<len;j++) wsum+=n[j]-'';
if(wsum%==)
{
printf("B\n");
continue;
}
else
{
printf("A\n");
continue;
}
}
return ;
}
3
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 1000)
第2 - T + 1行:每行1个数N。(1 <= N <= 10^9)
共T行,如果A获胜输出A,如果B获胜输出B。
3
2
3
4
B
B
A
#include <iostream>
#include <cstdio> using namespace std; const int M = ;
int t;
int f[M]; int main()
{
f[]=f[]=;
for(int i=;i<=M;i++)
f[i]=f[i-]+f[i-];
scanf("%d",&t);
bool flag;
int q;
while(t--)
{
flag=false;///清除标记
scanf("%d",&q);
for(int i=;i<=q;i++)
{
if(f[i]==q)
{
printf("B\n");
break;
}
else if(f[i]>q)
{
flag=true;
break;
}
}
if(flag) printf("A\n");
}
return ;
}
4
博弈论 x的更多相关文章
- IT人生知识分享:博弈论的理性思维
背景: 昨天看了<最强大脑>,由于节目比较有争议性,不知为什么,作为一名感性的人,就想试一下如果自己理性分析会是怎样的呢? 过程是这样的: 中国队(3人)VS英国队(4人). 1:李建东( ...
- [poj2348]Euclid's Game(博弈论+gcd)
Euclid's Game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9033 Accepted: 3695 Des ...
- 博弈论揭示了深度学习的未来(译自:Game Theory Reveals the Future of Deep Learning)
Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology ...
- TYVJ博弈论
一些比较水的博弈论...(为什么都没有用到那什么SG呢....) TYVJ 1140 飘飘乎居士拯救MM 题解: 歌德巴赫猜想 #include <cmath> #include < ...
- Codeforces 549C. The Game Of Parity[博弈论]
C. The Game Of Parity time limit per test 1 second memory limit per test 256 megabytes input standar ...
- 【POJ】2234 Matches Game(博弈论)
http://poj.org/problem?id=2234 博弈论真是博大精深orz 首先我们仔细分析很容易分析出来,当只有一堆的时候,先手必胜:两堆并且相同的时候,先手必败,反之必胜. 根据博弈论 ...
- 博弈论入门小结 分类: ACM TYPE 2014-08-31 10:15 73人阅读 评论(0) 收藏
文章原地址:http://blog.csdn.net/zhangxiang0125/article/details/6174639 博弈论:是二人或多人在平等的对局中各自利用对方的策略变换自己的对抗策 ...
- poj 3710 Christmas Game 博弈论
思路:首先用Tarjan算法找出树中的环,环为奇数变为边,为偶数变为点. 之后用博弈论的知识:某点的SG值等于子节点+1后的异或和. 代码如下: #include<iostream> #i ...
- hdoj 1404 Digital Deletions(博弈论)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1404 一看就是博弈论的题目,但并没有什么思路,看了题解,才明白 就是求六位数的SG函数,暴力一遍,打表 ...
- CodeForces 455B A Lot of Games (博弈论)
A Lot of Games 题目链接: http://acm.hust.edu.cn/vjudge/contest/121334#problem/J Description Andrew, Fedo ...
随机推荐
- 应用安全 - 软件漏洞 - 可视化平台kibana漏洞汇总
CVE-2019-7609 Date: 类型: RCE 前置条件: Timelion And Canvas 影响范围: kibana-RCE < PoC | ExP: https://gith ...
- [转帖]K8s集群安装--最新版 Kubernetes 1.14.1
K8s集群安装--最新版 Kubernetes 1.14.1 http://www.cnblogs.com/jieky/p/10679998.html 原作者写的比较简单 大略流程和跳转的多一些 改天 ...
- 【转】mysqldump原理探究
作者:胡儿胡儿 来源:CSDN 原文:https://blog.csdn.net/cug_jiang126com/article/details/49824471 —————————————————— ...
- webpack4下url-loader打包图片问题
webpack.condig.js: const path = require('path'); //导入插件 const VueLoaderPlugin = require('vue-loade ...
- 洛谷 P5663 加工零件 & [NOIP2019普及组] (奇偶最短路)
传送门 解题思路 很容易想到用最短路来解决这一道问题(题解法),因为两个点之间可以互相无限走,所以如果到某个点的最短路是x,那么x+2,x+4也一定能够达到. 但是如何保证这是正确的呢?比如说到某个点 ...
- 同一台电脑管理多个SSH KEY
同一台电脑关于多个SSH KEY管理 笔者之前为电脑中的homestead虚拟机配置过id_rsa,但现在因为想在github上搭建基于hexo的博客,所以需要配置github的ssh key,因此产 ...
- PHP 经典有趣的算法
原文:https://blog.csdn.net/a519395243/article/details/77942913 1.一群猴子排成一圈,按1,2,…,n依次编号.然后从第1只开始数,数到第m只 ...
- Windows下spark1.6.0本地环境搭建
由于spark是用scala编写的,且需要jdk的环境支撑,所以本地spark环境的搭建需要四个步骤:JDK的安装,scala的安装,hadoop的配置,spark的配置. 一.jdk的安装与环境变量 ...
- bzoj4103 [Thu Summer Camp 2015]异或运算(可持久化trie)
内存限制:512 MiB 时间限制:1000 ms 题目描述 给定长度为n的数列X={x1,x2,...,xn}和长度为m的数列Y={y1,y2,...,ym},令矩阵A中第i行第j列的值Aij=xi ...
- js倒计时跳转jquery插件版
<script type="text/javascript" src="js/jquery1.91.min.js"></script> ...