博弈论 x
——关于博弈论
四道例题带你走进博弈论~
(考虑必败态,必胜态)
Ps:要理解这种思想,首先要明白什么叫必败态。说简单点,必败态就是“在对方使用最优策略时,无论做出什么决策都会导致失败的局面”。其他的局面称为胜态,值得注意的是在胜态下做出错误的决策也有可能导致失败。此类博弈问题的精髓就是让对手永远面对必败态。 必败态和胜态有着如下性质: 1、若面临末状态者为获胜则末状态为胜态否则末状态为必败态。 2、一个局面是胜态的充要条件是该局面进行某种决策后会成为必败态。 3、一个局面是必败态的充要条件是该局面无论进行何种决策均会成为胜态 这三条性质正是博弈树的原理,但博弈树是通过计算每一个局面是胜态还是必败态来解题,这样在局面数很多的情况下是很难做到的,此时,我们可以利用人脑的推演归纳能力找到必败态的共性,就可以比较好的解决此类问题了。
1)
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 10000)
第2 - T + 1行:每行2个数N,K。中间用空格分隔。(1 <= N,K <= 10^9)
共T行,如果A获胜输出A,如果B获胜输出B。
4
3 2
4 2
7 3
8 3
#include <iostream>
#include <cstdio> using namespace std; int n,k,t; int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&k);
if(n<k)///此时需要特判n是否比k大
{///如果小于,A获胜(可以自己试试)
printf("A\n");
continue;
}
else
{
if(n%(k+)==)
{
printf("B\n");
continue;
}
else
{
printf("A\n");
continue;
}
}
}
return ;
}
1
2)
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 10000)
第2 - T + 1行:每行1个数N。(1 <= N <= 10^9)
共T行,如果A获胜输出A,如果B获胜输出B。
3
2
3
4
B
A
A
#include <iostream>
#include <cstdio> using namespace std; int n,k,t; int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
if(n%== || n%==)///规律
{
printf("B\n");
continue;
}
else
{
printf("A\n");
continue;
}
}
return ;
}
2
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 1000)
第2 - T + 1行:每行1个数N。(1 <= N <= 10^1000)
共T行,如果A获胜输出A,如果B获胜输出B。
3
2
3
4
A
B
A
#include <iostream>
#include <cstdio> using namespace std; long long t,wsum;
string n; int main()
{
scanf("%lld",&t);
int len;
for(int i=;i<=t;i++)
{
cin>>n;
wsum=;///清零!!!
len=n.length();
for(int j=;j<len;j++) wsum+=n[j]-'';
if(wsum%==)
{
printf("B\n");
continue;
}
else
{
printf("A\n");
continue;
}
}
return ;
}
3
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 1000)
第2 - T + 1行:每行1个数N。(1 <= N <= 10^9)
共T行,如果A获胜输出A,如果B获胜输出B。
3
2
3
4
B
B
A
#include <iostream>
#include <cstdio> using namespace std; const int M = ;
int t;
int f[M]; int main()
{
f[]=f[]=;
for(int i=;i<=M;i++)
f[i]=f[i-]+f[i-];
scanf("%d",&t);
bool flag;
int q;
while(t--)
{
flag=false;///清除标记
scanf("%d",&q);
for(int i=;i<=q;i++)
{
if(f[i]==q)
{
printf("B\n");
break;
}
else if(f[i]>q)
{
flag=true;
break;
}
}
if(flag) printf("A\n");
}
return ;
}
4
博弈论 x的更多相关文章
- IT人生知识分享:博弈论的理性思维
背景: 昨天看了<最强大脑>,由于节目比较有争议性,不知为什么,作为一名感性的人,就想试一下如果自己理性分析会是怎样的呢? 过程是这样的: 中国队(3人)VS英国队(4人). 1:李建东( ...
- [poj2348]Euclid's Game(博弈论+gcd)
Euclid's Game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9033 Accepted: 3695 Des ...
- 博弈论揭示了深度学习的未来(译自:Game Theory Reveals the Future of Deep Learning)
Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology ...
- TYVJ博弈论
一些比较水的博弈论...(为什么都没有用到那什么SG呢....) TYVJ 1140 飘飘乎居士拯救MM 题解: 歌德巴赫猜想 #include <cmath> #include < ...
- Codeforces 549C. The Game Of Parity[博弈论]
C. The Game Of Parity time limit per test 1 second memory limit per test 256 megabytes input standar ...
- 【POJ】2234 Matches Game(博弈论)
http://poj.org/problem?id=2234 博弈论真是博大精深orz 首先我们仔细分析很容易分析出来,当只有一堆的时候,先手必胜:两堆并且相同的时候,先手必败,反之必胜. 根据博弈论 ...
- 博弈论入门小结 分类: ACM TYPE 2014-08-31 10:15 73人阅读 评论(0) 收藏
文章原地址:http://blog.csdn.net/zhangxiang0125/article/details/6174639 博弈论:是二人或多人在平等的对局中各自利用对方的策略变换自己的对抗策 ...
- poj 3710 Christmas Game 博弈论
思路:首先用Tarjan算法找出树中的环,环为奇数变为边,为偶数变为点. 之后用博弈论的知识:某点的SG值等于子节点+1后的异或和. 代码如下: #include<iostream> #i ...
- hdoj 1404 Digital Deletions(博弈论)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1404 一看就是博弈论的题目,但并没有什么思路,看了题解,才明白 就是求六位数的SG函数,暴力一遍,打表 ...
- CodeForces 455B A Lot of Games (博弈论)
A Lot of Games 题目链接: http://acm.hust.edu.cn/vjudge/contest/121334#problem/J Description Andrew, Fedo ...
随机推荐
- Katalon Studio学习笔记(三)——chromedriver与当前chrome版本不符,如何替换
首先下载chrome版本对应的chromedriver.exe文件,然后找到katalon如下图所示文件夹中,替换chromedriver.exe重新启动katalon即可. 最新适配chrome 7 ...
- java 接入微信 spring boot 接入微信
1.pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns="h ...
- zebra代码分析
http://blog.csdn.net/xuyanbo2008/article/details/7439738
- Django中Model进阶操作
一.字段 AutoField(Field) - int自增列,必须填入参数 primary_key=True BigAutoField(AutoField) - bigint自增列,必须填入参数 pr ...
- Python 入门之 闭包
Python 入门之 闭包 1.闭包 (1)在嵌套函数内使用(非本层变量)和非全局变量就是闭包 (2)_ closure _ 判断是不是闭包 def func(): a = 1 def foo(): ...
- python学习五十五天subprocess模块的使用
我们经常需要通过python去执行一条系统执行命令或者脚本,系统的shell命令独立于你python进程之外的,没执行一条命令,就发起一个新的进程, 三种执行命令的方法 subprocess.run( ...
- docker容器配置hosts
在mac开发的时候,docker容器没有配置hosts,但是mac本机配置了hosts,这个本机的hosts配置对docker容器里面的所有容器都适用,但是到了linux的时候反而不适用了 可以通过下 ...
- AXI总线协议
AXI总线协议 (一).概述 AXI (高性能扩展总线接口,Advanced eXtensible Interface)是ARM AMBA 单片机总线系列中的一个协议,是计划用于高性能.高主频的系统设 ...
- scala学习笔记(8)文件和正则表达式
1.读取行 ---------------------------------------- 要读取文件中所有的行,可以调用scala.io.Source对象的getLine方法: import sc ...
- [七月挑选]优化hexo目录,使本地图片能显示出来
title: 优化hexo目录,使本地图片能显示出来 查看了一下从此蜕变作者的Hexo中添加本地图片,提炼了一些能优化本地图片存放及编写是图片查看的问题. 1.修改配置文件_config.yml 里的 ...