2019牛客多校第三场A Graph Games 分块思想
题意:给你一张无向图,设s(x)为与x直接相连的点的集合,题目中有两种操作:
1:1 l r 将读入的边的序列中第l个到第r个翻转状态(有这条边 -> 没这条边, 没这条边 -> 有这条边)
2:2 x y 询问s(x)和s(y)是否相等。
思路(官方题解):首要问题是怎么快速判断s(x)和s(y)是否相等。我们发现边的翻转操作实际上是异或操作,所以不妨给每个点随机一个值,用与x直接相连的点的异或和作为s(x),这样可以快速判断s(x)和s(y)是否相等。判相等解决了,怎么快速维护操作1呢?我们发现好像不好直接维护,因为把一个区间的边翻转了,好像除了遍历,很难知道具体影响了哪些点,或者我们只标记翻转,计算s(x)的时候枚举和x相连的边,判断是否翻转。这两种好像复杂度都比较高,但是我们可以折中一下,我们对点进行分类,根据度数是否大于sqrt(m),分为小点和大点两类。这个套路之前见过,放上链接https://www.cnblogs.com/pkgunboat/p/10995209.html对于小点,边数不超过sqrt(m),直接暴力判断是否翻转就可以了。对于大点,由于大点只有O(sqrt(m))种,相对比较好维护。我们可以对边序列分块,维护每一个块如果整体翻转了对某个大点的贡献。这样,我们在进行区间操作的时候,在块间打翻转标记,在两侧暴力翻转,如果翻转的边的端点是大点,就直接把影响加上。询问的时候,看一下所有块的整体翻转情况,如果整体是翻转的,因为之前已经预处理了所有块对大点的翻转影响,所以把影响加上。这样每次询问复杂度O(sqrt(m))。
代码:
#include <bits/stdc++.h>
#define LL long long
#define pii pair<int, int>
using namespace std;
const int maxn = 200010;
LL val[maxn], now[maxn];
LL f[510][1010];
bool flip[510], v[maxn];
bool is_big[maxn];
vector<pii> G[maxn];
int pos[maxn], L[maxn], R[maxn], mp[maxn], tot;
random_device rd;
mt19937 Random(rd());
//LL Random() {
// return (LL)rand() * rand();
//}
struct edge{
int u, v;
};
edge e[maxn];
LL get(LL mod) {
return ((__int128)Random() * Random()) % mod;
}
void change(int l, int r) {
int p = pos[l], q = pos[r];
if(p == q) {
for (int i = l; i <= r; i++) {
v[i] ^= 1;
if(is_big[e[i].u]) now[e[i].u] ^= val[e[i].v];
if(is_big[e[i].v]) now[e[i].v] ^= val[e[i].u];
}
} else {
for (int i = p + 1; i <= q - 1; i++) {
flip[i] ^= 1;
}
for (int i = L[q]; i <= r; i++) {
v[i] ^= 1;
if(is_big[e[i].u]) now[e[i].u] ^= val[e[i].v];
if(is_big[e[i].v]) now[e[i].v] ^= val[e[i].u];
}
for (int i = l; i <= R[p]; i++) {
v[i] ^= 1;
if(is_big[e[i].u]) now[e[i].u] ^= val[e[i].v];
if(is_big[e[i].v]) now[e[i].v] ^= val[e[i].u];
}
}
}
int main() {
int T, op, x, y, n, m, T1;
srand(time(0));
scanf("%d", &T);
while(T--) {
tot = 0;
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) {
val[i] = get(1e18);
G[i].clear();
now[i] = 0;
flip[i] = 0;
}
for (int i = 1; i <= m; i++) {
scanf("%d%d", &e[i].u, &e[i].v);
G[e[i].u].push_back(make_pair(e[i].v, i));
G[e[i].v].push_back(make_pair(e[i].u, i));
now[e[i].v] ^= val[e[i].u];
now[e[i].u] ^= val[e[i].v];
}
int t = sqrt(m);
int block = t;
for (int i = 1; i <= t; i++) {
L[i] = (i - 1) * block + 1;
R[i] = i * block;
}
if(R[t] < m) {
t++;
L[t] = R[t - 1] + 1;
R[t] = m;
}
for (int i = 1; i <= n; i++) {
if(G[i].size() >= block) {
is_big[i] = 1;
mp[i] = ++tot;
} else {
is_big[i] = 0;
mp[i] = 0;
}
}
assert(tot <= 1000);
assert(t <= 500);
for (int i = 1; i <= t; i++) {
for (int j = 1; j <= tot; j++)
f[i][j] = 0;
for (int j = L[i]; j <= R[i]; j++) {
pos[j] = i;
v[j] = 0;
}
}
for (int i = 1; i <= t; i++) {
for (int j = L[i]; j <= R[i]; j++) {
if(is_big[e[j].u]) {
f[i][mp[e[j].u]] ^= val[e[j].v];
}
if(is_big[e[j].v]) {
f[i][mp[e[j].v]] ^= val[e[j].u];
}
}
}
scanf("%d", &T1);
while(T1--) {
scanf("%d%d%d", &op, &x, &y);
if(op == 1) {
change(x, y);
} else {
LL ans1 = now[x], ans2 = now[y];
if(is_big[x]) {
for (int i = 1; i <= t; i++) {
if(flip[i]) ans1 ^= f[i][mp[x]];
}
} else {
for (int i = 0; i < G[x].size(); i++) {
pii tmp = G[x][i];
if(v[tmp.second] ^ flip[pos[tmp.second]])
ans1 ^= val[tmp.first];
}
}
if(is_big[y]) {
for (int i = 1; i <= t; i++) {
if(flip[i]) ans2 ^= f[i][mp[y]];
}
} else {
for (int i = 0; i < G[y].size(); i++) {
pii tmp = G[y][i];
if(v[tmp.second] ^ flip[pos[tmp.second]])
ans2 ^= val[tmp.first];
}
}
if(ans1 == ans2) {
printf("1");
} else {
printf("0");
}
}
}
printf("\n");
}
}
2019牛客多校第三场A Graph Games 分块思想的更多相关文章
- 2019牛客多校第三场 F.Planting Trees
题目链接 题目链接 题解 题面上面很明显的提示了需要严格\(O(n^3)\)的算法. 先考虑一个过不了的做法,枚举右下角的\((x,y)\),然后二分矩形面积,枚举其中一边,则复杂度是\(O(n^3 ...
- 2019牛客多校第三场D BigInteger——基础数论
题意: 用 $A(n)$ 表示第 $n$ 个只由1组成分整数,现给定一个素数 $p$,求满足 $1 \leq i\leq n, 1 \leq j \leq m, A(i^j) \equiv 0(mo ...
- [2019牛客多校第三场][G. Removing Stones]
题目链接:https://ac.nowcoder.com/acm/contest/883/G 题目大意:有\(n\)堆石头,每堆有\(a_i\)个,每次可以选其中两堆非零的石堆,各取走一个石子,当所有 ...
- [题解]Magic Line-计算几何(2019牛客多校第三场H题)
题目链接:https://ac.nowcoder.com/acm/contest/883/H 题意: 给你偶数个点的坐标,找出一条直线将这n个点分成数量相等的两部分 并在这条直线上取不同的两个点,表示 ...
- [题解]Crazy Binary String-前缀和(2019牛客多校第三场B题)
题目链接:https://ac.nowcoder.com/acm/contest/883/B 题意: 给你一段长度为n,且只有 ‘0’ 和 ‘1’ 组成的字符串 a[0,...,n-1].求子串中 ‘ ...
- 启发式分治:2019牛客多校第三场 G题 Removing Stones
问题可以转换为求有多少个区间数字的总和除2向下取整大于等于最大值.或者解释为有多少个区间数字的总和大于等于最大值的两倍(但是若区间数字总和为奇数,需要算作减1) 启发式分治: 首先按最大值位置分治,遍 ...
- 2019牛客多校第三场B-Crazy Binary String(前缀和+思维)
Crazy Binary String 题目传送门 解题思路 把1记为1,把0记为-1,然后求前缀和,前缀和相等的就说明中间的01数一样.只要记录前缀和数值出现的位置即可更新出答案. 代码如下 #in ...
- 2019牛客多校第三场H-Magic Line
Magic Line 题目传送门 解题思路 因为坐标的范围只有正负1000,且所有点坐标都是整数,所以所有点相连构成的最大斜率只有2000,而我们能够输出的的坐标范围是正负10^9.所以我们先把这n个 ...
- 2019牛客多校第三场J-LRU management(map+双向链表)
LRU management 题目传送门 解题思路 用map索引对应地址,用双向链表维护序列. 代码如下 #include <bits/stdc++.h> #define INF 0x3f ...
随机推荐
- javascript 浏览器定位
<!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...
- Ubunton
Ubunton 装完机后 root账户进不去 没密码 在自己账号下 sudo passwd 输入两次密码就是root的密码 之后就可以su root 密码进入了 外部客户端sftp方式连接: sudo ...
- 请求体中需要的true和requests包put请求冲突了
python put请求,添加请求头 不知道怎么解决
- poj 2104: K-th Number 【主席树】
题目链接 学习了一下主席树,感觉具体算法思路不大好讲.. 大概是先建个空线段树,然后类似于递推,每一个都在前一个“历史版本”的基础上建立一个新的“历史版本”,每个历史版本只需占用树高个空间(好神奇!) ...
- SpringMvc中乱码问题的解决
一:如果是前台传递的数据有问题. 在tomcat的service.xml中加上: URIEncoding="UTF-8" <Connector URIEncoding=&qu ...
- 【FPGA】 007 --Verilog中 case,casez,casex的区别
贴一个链接:http://www.cnblogs.com/poiu-elab/archive/2012/11/02/2751323.html Verilog中 case,casez,casex的区别 ...
- 2018-2019-2 《Java程序设计》第11周学习总结
20175319 2018-2019-2 <Java程序设计>第11周学习总结 教材学习内容总结 本周学习<Java程序设计>第十三章java网络编程: - URL类 URL类 ...
- Dealing with exceptions thrown in Application_Start()
https://blog.richardszalay.com/2007/03/08/dealing-with-exceptions-thrown-in-application_start/ One a ...
- JAVA中STL使用
Vector:和c++的vector使用方法类似. Vector<Integer> vec=new Vector<> (); ArrayList:Java.util.Array ...
- 转载:Linux下启动和关闭Weblogic(管理服务器+被管服务器)
转载自:http://www.cnblogs.com/nick-huang/p/3834134.html 感谢! Weblogic的管理服务器和被管服务器的启动.关闭,偶尔会用到,却又不常用,导致需 ...