这道题... 让我见识了纪中的强大

这道题是来纪中第二天(7.2)做的,这么晚写题解是因为

我去学矩阵乘法啦啦啦啦啦
对矩阵乘法一窍不通的童鞋戳链接啦

层层递推会TLE,正解矩阵快速幂

首先题意就是给你一个 n 行m 列 的格子图 一只马从棋盘的左上角跳到右下角。每一步它向右跳奇数列,且跳到本行或相邻行。

题意很简单
暴力dp的思路也很简单
但是数据很恶心
虽然远古一点,但毕竟是省选题

1 ≤ n ≤ 50,2 ≤ m ≤ 10^9

不过还是给了我们一点提示:
n这么小?

总之我们先找出转移式
对于每一个点 (i,j) 的
我们可以从它左边所有奇数行跳过来
所以DP[i][i]=sum( 左边间隔偶数列上中下三行的和 )
如果每个点都往前找一次的话
这样复杂度是O(n2m)
得分10

所以我们想到了前缀和
别问我怎么想到的,有什么套路
这种东西真的是灵感

DP[i][j]保存 (i-1)列+(i-3)列......上中下三行的和
这么简化之后,我们的递推式就好写了
时间复杂度O(mn)
甚至可以用滚动数组优化
这样空间也不是问题了O(n)
得分50

DP[i][j] = DP[i-2][j] + DP[i-1][j+1] + DP[i-1][j] + DP[i-1][j-1]

那么怎么得满分呐?
敲黑板划重点啦

观察一下递推式......嗯?递推式啊
那就用矩阵快速幂吧
不过这道题的递推关系有点复杂啊___二维递推

越到这种时候越要冷静观察,感性思考

再吱一声:不会矩阵快速幂的同学戳链接

观察一下,递推式需要两行数据
我们把这两行看成两个数据
跟斐波那契数列的递推矩阵一样放在一行

展开来就是像这样的东西(以n=4为例)


再展开

虽然这么看很乱(个P),不过我们只要仔细思考其中的意义就不难明白了

这样写下来之后,我们所需要的 DP[i-2][j] , DP[i-1][j+1] , DP[i-1][j] , DP[i-1][j-1]
就都出现在矩阵L中了

开始填矩阵R

根据矩阵乘法左行右列的规则,每次乘法 矩阵L 的每个元素都有机会被乘到
我们可以在填矩阵的时候自己选择系数(多方便啊)

由于我们的矩阵是 2n 的 , 所以我们需要一个2n*2n的正方形矩阵(我都以4为例呐)


(这是一个已经填好的矩阵)

答案A 的第一行 第一列 等于 矩阵L的第一行 * 矩阵R的第一列(详见矩阵乘法详解)
由于系数都是1,所以我们填1

我还是随便解释一个吧
不然跟其他的题解有什么区别

DP[i][3] = DP[i-2][3] + DP[i-1][2] + DP[i-1][3] + DP[i-1][4]

所以在这个矩阵中,第3列是这么乘的

大家一定都懂了

对吧....

虽然n是不同的,但是矩阵的构造是相似的
所以我写了一个函数来初始化数组L和R

 void _make(int A[LEN][LEN], int B[LEN][LEN], int len) {
for (int i = ; i <= len; ++i) {
for (int j = ; j <= len; ++j) {
if (i == j)
A[i][j] = A[len + i][j] = A[i][len + j] = ;
if (i - j == || j - i == )
A[i][j] = ;
}
}
B[][] = B[][] = B[][len + ] = ;
}

_make

然后矩阵快速幂就完事了(详细过程见淼淼的矩阵快速幂详解

来了源码

 //

 #include <iostream>
using namespace std; #define LEN 100
#define MOD 30011 unsigned int n, m; int mat[LEN][LEN] = {}, ans[LEN][LEN]; void _make(int A[LEN][LEN], int B[LEN][LEN], int len);
void _mul(int L[LEN][LEN], int R[LEN][LEN], int A[LEN][LEN], int x, int y, int z);
void _mi(int L[LEN][LEN], int R[LEN][LEN], int A[LEN][LEN], int x, int y, int m); int main() {
freopen("2.in", "r", stdin);
cin >> n >> m;
if (m == ) {
cout << ((n == ) ? () : ());
return ;
}
_make(mat, ans, n);
_mi(ans, mat, ans, , * n, m - );
cout << (ans[][n - ] + ans[][n]) % MOD;
return ;
} void _make(int A[LEN][LEN], int B[LEN][LEN], int len) {
for (int i = ; i <= len; ++i) {
for (int j = ; j <= len; ++j) {
if (i == j)
A[i][j] = A[len + i][j] = A[i][len + j] = ;
if (i - j == || j - i == )
A[i][j] = ;
}
}
B[][] = B[][] = B[][len + ] = ;
} void _mul(int L[LEN][LEN], int R[LEN][LEN], int A[LEN][LEN], int x, int y, int z) {
long long cmp[LEN][LEN] = {};
for (int i = ; i <= x; ++i)
for (int j = ; j <= z; j++)
for (int k = ; k <= y; k++)
cmp[i][j] = (cmp[i][j] + L[i][k] * R[k][j]) % MOD;
for (int i = ; i <= x; ++i)
for (int j = ; j <= z; ++j)
A[i][j] = cmp[i][j];
} void _mi(int L[LEN][LEN], int R[LEN][LEN], int A[LEN][LEN], int x, int y, int m) {
int cmp[LEN][LEN];
for (int i = ; i <= x; ++i)
for (int j = ; j <= y; ++j)
cmp[i][j] = L[i][j];
while (m > ) {
if (m & )
_mul(cmp, R, cmp, x, y, y);
m >>= ;
_mul(R, R, R, y, y, y);
}
for (int i = ; i <= x; ++i)
for (int j = ; j <= y; ++j)
A[i][j] = cmp[i][j];
}

超级跳马

[题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化的更多相关文章

  1. HDU - 2604 Queuing(递推式+矩阵快速幂)

    Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  2. HDU5950 Recursive sequence 非线性递推式 矩阵快速幂

    题目传送门 题目描述:给出一个数列的第一项和第二项,计算第n项. 递推式是 f(n)=f(n-1)+2*f(n-2)+n^4. 由于n很大,所以肯定是矩阵快速幂的题目,但是矩阵快速幂只能解决线性的问题 ...

  3. hdu 5950 Recursive sequence 递推式 矩阵快速幂

    题目链接 题意 给定\(c_0,c_1,求c_n(c_0,c_1,n\lt 2^{31})\),递推公式为 \[c_i=c_{i-1}+2c_{i-2}+i^4\] 思路 参考 将递推式改写\[\be ...

  4. HDU-6185-Covering(推递推式+矩阵快速幂)

    Covering Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  5. [HDOJ2604]Queuing(递推,矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2604 递推式是百度的,主要是练习一下如何使用矩阵快速幂优化. 递推式:f(n)=f(n-1)+f(n- ...

  6. [Lonlife1031]Bob and Alice are eating food(递推,矩阵快速幂)

    题目链接:http://www.ifrog.cc/acm/problem/1031 题意:6个水果中挑出n个,使得其中2个水果个数必须是偶数,问有多少种选择方法. 设中0代表偶数,1代表奇数.分别代表 ...

  7. 【图灵杯 F】一道简单的递推题(矩阵快速幂,乘法模板)

    Description 存在如下递推式: F(n+1)=A1*F(n)+A2*F(n-1)+-+An*F(1) F(n+2)=A1*F(n+1)+A2*F(n)+-+An*F(2) - 求第K项的值对 ...

  8. hihoCoder 1143 : 骨牌覆盖问题·一(递推,矩阵快速幂)

    [题目链接]:click here~~ 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个2xN的长条形 ...

  9. UESTC - 1610 递推方程+矩阵快速幂

    感觉像是HDU Keyboard的加强版,先推出3张牌时的所有组合,然后递推出n张牌 看到n=1e18时吓尿了 最后24那里还是推错了.. (5行1列 dp[1][n],dp[2][n],dp[3][ ...

随机推荐

  1. 好多坑的升级 phpStudy 中 MySQL 版本至 5.7.17

      由于本地用的集成环境是 phpStudy 2016,没有找到升级 MySQL 版本的选项,所以自己升级一下. 从官网上下载高版本的 MySQL :https://dev.mysql.com/dow ...

  2. (转)window.parent和window.opener区别

    下面一段代码是关于window.parent和window.opener区别 来讲的,我们如果要用到iframe的值传到另一框架就要用到window.opener.document.getElemen ...

  3. 【杂题】[AGC034D] Manhattan Max Matching【费用流】

    Description 有一个无限大的平面,有2N个位置上面有若干个球(可能重复),其中N个位置是红球,N个位置是蓝球,红球与蓝球的总数均为S. 给出2N个位置和上面的球数,现要将红球与蓝球完美匹配, ...

  4. 博主的OI流水账

    2017.8.4 入坑OI 2017.11.11 参加了NOIP2017提高组,0+85+0+30+50+0=165,荣获省二(具体分数其实记不清了反正差不多吧) 2018.2 学会树状数组,线段树 ...

  5. vue-cli的基础构造

    1,项目目录 2, bulid 下文件及目录 3,config下文件及目录 接下来说说vue-cli项目中页面相关的主要文件^o^ 首先是index.html: 说明:一般只定义一个空的根节点,在ma ...

  6. JS框架_(Bootstrap.js)实现简单的轮播图

    Bootstrap框架中 轮播(Carousel)插件是一种灵活的响应式的向站点添加滑块的方式 轮播图效果: <!DOCTYPE html> <html> <head&g ...

  7. [CSP-S模拟测试]:多维网格(组合数学+容斥)

    题目传送门(内部题138) 输入格式 输入数据第一行为两个整数$d,n$. 第二行$d$个非负整数$a_1,a_2,...,a_d$.     接下来$n$行,每行$d$个整数,表示一个坏点的坐标.数 ...

  8. pip & conda 换源

    conda换源方法具体参考清华大学镜像站Anaconda 镜像使用帮助 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn ...

  9. Postman下载与安装

    融e学-一个专注于重构知识,培养复合型人才的平台:http://www.i-ronge.com/ Postman 的官网下载地址是:https://www.getpostman.com/ 下载后看到压 ...

  10. webpack 最新版

    之前说过老的版本,webpack@3.8.1 这个版本,现在我们来看看,新版本和老版本的区别 webpack 4 以上的版本 npm 全称 node package manager (node 包管理 ...