Time limit 1000 ms
Memory limit 32768 kB

Description

There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this "How far is it if I want to go from house A to house B"? Usually it hard to answer. But luckily int this village the answer is always unique, since the roads are built in the way that there is a unique simple path("simple" means you can't visit a place twice) between every two houses. Yout task is to answer all these curious people.

Input

First line is a single integer T(T<=10), indicating the number of test cases.
  For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
  Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.

Output

For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case.

Sample Input

2
3 2
1 2 10
3 1 15
1 2
2 3 2 2
1 2 100
1 2
2 1

Sample Output

10
25
100
100

题目分析

乍一看,这个是求最短路的问题,本想着prim算法弄完,但是奈何这个题目被归在了RMQ&LCA专题里面,而且这个结点的个数最大有4w个,为了防止用prim算法出现超时,最后还是老老实实的去学了LCA算法,我推荐一个学这个东西的地方,讲的还不错,有这个题目的原题讲解 https://www.bilibili.com/video/av41067872/?p=5

好了,来分析一下这个题目吧,求指定村庄之间的最短距离,因为要用到 Lowest Common Ancestor 算法,我们用dis[x]表示结点(也就是城市x)离根结点的距离,由于题目的特殊性, "But luckily int this village the answer is always unique, since the roads are built in the way that there is a unique simple path("simple" means you can't visit a place twice) between every two houses" , 这个地方说明了每两个城市之间的路是固定的,有且只有一条(想到这里,发现哪里是什么最短路,就是要你求两点之间的距离)。

假设u,v为要求距离的两个城市,k表示二者的LCA,那么dis[u] - dis[k] 为u距离LCA的距离,而dis[v] - dis[k] 为v距离LCA的距离,所以dis[u] + dis[v] - 2 * dis[k] 就是两个城市之间的距离,然后其他的步骤就按照LCA算法求出LCA就好,LCA的教程请参考上面的哪个网址,个人觉得讲的很好。

代码区

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include <vector>
using namespace std;
const int inf = 0x3f3f3f3f;
const int max2 = 100 + 10;
const int max3 = 1000 + 10;
const int max4 = 10000 + 10;
typedef struct Edge{
int to;
int val;
Edge(int to = 0 , int val = 0):to(to),val(val){}
}Edge; vector<Edge>road[4 * max4]; //road[x]保存从x出发的所有道路,road[x][i].to表示这条路的另一个点
int dis[4 * max4]; //dis[x]记录结点x离根结点的距离
int father[4 * max4][15]; //father[x][j]记录从x点向上2^j次层的祖先结点
int depth[4 * max4]; //depth[x]记录点x的深度
int lg[4 * max4]; //log2n 向下取整 void init()
{
memset(dis, 0, sizeof(dis));
memset(father, 0, sizeof(father));
memset(depth, 0, sizeof(depth));
for (int i = 0; i < 4 * max4;i++)
road[i].clear();
} void dfs(int now,int fa)
{
depth[now] = depth[fa] + 1;
father[now][0] = fa; //将now点的祖先结点全部记录下来
for (int j = 1; j <= lg[depth[now]] + 1; j++)
father[now][j] = father[father[now][j - 1]][j - 1]; //搜索当前结点的子结点
for (int i = 0; i < road[now].size();i++)
{
if(road[now][i].to != fa) //如果某一条路是当前结点和父结点的,那么没有必要向上搜索
{
dis[road[now][i].to] = dis[now] + road[now][i].val; //子结点到根结点的距离等于父结点到根结点的距离加上这条路的距离
dfs(road[now][i].to, now);
}
}
} //返回结点u,v的最小公共祖先
int lca(int u,int v)
{
if (depth[u] < depth[v])
swap(u, v); while (depth[u] != depth[v])
u = father[u][lg[depth[u] - depth[v]]]; if (u == v)
return u; for (int i = lg[depth[u]];i >= 0;i--)
{
//当两者的某祖先结点不一致的时候,说明还需要继续向上查找
//当u,v位lca的最近子结点的时候,对于任意的father[u][i]都满足
//father[u][i] == father[v][i] ,所以最后u,v为lca的最近子结点
if(father[u][i] != father[v][i])
{
u = father[u][i];
v = father[v][i];
}
}
return father[u][0];
} int main()
{
//预处理,lg[x]表示log2n向下取整
lg[0] = -1;
for (int i = 1; i < 4 * max4;i++)
lg[i] = lg[i >> 1] + 1; int t;
scanf("%d",&t);
while(t--)
{
init();
int n, m;
scanf("%d%d", &n, &m);
for (int i = 1; i < n; i++)
{
int s, e, v;
scanf("%d%d%d", &s, &e, &v);
road[s].push_back({ e,v });
road[e].push_back({ s,v });
}
dfs(1, 0); //树中任意一个结点均可以作为根结点,但是不确定结点的个数,而且编号为1的结点所以的树均有,所以将1作为根结点
while(m--)
{
int s, e;
scanf("%d%d", &s, &e);
int k = lca(s, e);
printf("%d\n", dis[s] + dis[e] - 2 * dis[k]);
}
}
return 0;
}

HDU 2586——How far away ?的更多相关文章

  1. HDU - 2586 How far away ?(LCA模板题)

    HDU - 2586 How far away ? Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & ...

  2. hdu 2586 How far away ?倍增LCA

    hdu 2586 How far away ?倍增LCA 题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=2586 思路: 针对询问次数多的时候,采取倍增 ...

  3. HDU 2586 How far away ?【LCA】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=2586 How far away ? Time Limit: 2000/1000 MS (Java/Oth ...

  4. HDU 2586.How far away ?-离线LCA(Tarjan)

    2586.How far away ? 这个题以前写过在线LCA(ST)的,HDU2586.How far away ?-在线LCA(ST) 现在贴一个离线Tarjan版的 代码: //A-HDU25 ...

  5. HDU 2586 How far away ? (LCA)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 LCA模版题. RMQ+LCA: #include <iostream> #incl ...

  6. hdu - 2586 How far away ?(最短路共同祖先问题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 最近公共祖先问题~~LAC离散算法 题目大意:一个村子里有n个房子,这n个房子用n-1条路连接起 ...

  7. HDU 2586 How far away ?(LCA在线算法实现)

    http://acm.hdu.edu.cn/showproblem.php?pid=2586 题意:给出一棵树,求出树上任意两点之间的距离. 思路: 这道题可以利用LCA来做,记录好每个点距离根结点的 ...

  8. HDU 2586 How far away ?(LCA模板 近期公共祖先啊)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 Problem Description There are n houses in the vi ...

  9. HDU 2586 How far away ?【LCA模板题】

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=2586 题意:给你N个点,M次询问.1~N-1行输入点与点之间的权值,之后M行输入两个点(a,b)之间的最 ...

  10. hdu 2586 How far away ?(LCA - Tarjan算法 离线 模板题)

    How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

随机推荐

  1. Python天天学_03_基础三

    Python_day_03 金角大王: http://www.cnblogs.com/alex3714/articles/5740985.html ------Python是一个优雅的大姐姐 学习方式 ...

  2. #415 Div2 Problem C Do you want a data? (math && 前后缀和 && 快速幂)

    题意: 首先定义集合的F值为  这个集合里面最大值和最小值的差. 现给出一个拥有n个数的集合(没有相同的元素), 要求求出这个集合内所有子集的F的值的和.例如: {4.7}这个集合里面有子集{4}.{ ...

  3. 收藏一个bit模板使用实例

    #include<bits/stdc++.h> using namespace std; typedef long long ll; #define MAX_N 1000000 int b ...

  4. 如何制作自己的R包

    如何制作自己的R包? 摘自 方匡南 等编著<R数据分析-方法与案例详解>.电子工业出版社 R包简介 R包提供了一个加载所需代码.数据和文件的集合.R软件自身就包含大约30种不同功能的包,这 ...

  5. Presto部署指南

    1.Presto简介说明 Presto是一个开源的分布式SQL查询引擎,适用于交互式分析查询,数据量支持GB到PB字节. Presto的设计和编写完全是为了解决像Facebook这样规模的商业数据仓库 ...

  6. sh_06_元组基本使用

    sh_06_元组基本使用 info_tuple = ("zhangsan", 18, 1.75, "zhangsan") # 1. 取值和取索引 print(i ...

  7. numpy中双冒号的作用

    import numpy as np a = np.array([[1, 2, 3, 1, 3, 5], [4, 5, 6, 2, 4, 3]]) print('a') print(a) print( ...

  8. R_Studio(癌症)以等宽类别值、自定义类别值、等频类别值(分为5类)

    对“癌症.csv”中的肾细胞癌组织内微血管数进行连续属性的离散化处理 增加“微血管数分类1”属性,取值为等宽类别值(分为5类),增加“微血管数分类2”属性,取值为自定义类别值(0~40,41~60,6 ...

  9. Java中FileOutputStream流的write方法

    本文为大家分享了FileOutputStream流的write方法,供大家参考,具体内容如下 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...

  10. pip & conda 换源

    conda换源方法具体参考清华大学镜像站Anaconda 镜像使用帮助 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn ...