HDU 2586——How far away ?
Time limit | 1000 ms |
Memory limit | 32768 kB |
Description
There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this "How far is it if I want to go from house A to house B"? Usually it hard to answer. But luckily int this village the answer is always unique, since the roads are built in the way that there is a unique simple path("simple" means you can't visit a place twice) between every two houses. Yout task is to answer all these curious people.
Input
First line is a single integer T(T<=10), indicating the number of test cases.
For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.
Output
For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case.
Sample Input
2
3 2
1 2 10
3 1 15
1 2
2 3 2 2
1 2 100
1 2
2 1
Sample Output
10
25
100
100
题目分析
乍一看,这个是求最短路的问题,本想着prim算法弄完,但是奈何这个题目被归在了RMQ&LCA专题里面,而且这个结点的个数最大有4w个,为了防止用prim算法出现超时,最后还是老老实实的去学了LCA算法,我推荐一个学这个东西的地方,讲的还不错,有这个题目的原题讲解 https://www.bilibili.com/video/av41067872/?p=5
好了,来分析一下这个题目吧,求指定村庄之间的最短距离,因为要用到 Lowest Common Ancestor 算法,我们用dis[x]表示结点(也就是城市x)离根结点的距离,由于题目的特殊性, "But luckily int this village the answer is always unique, since the roads are built in the way that there is a unique simple path("simple" means you can't visit a place twice) between every two houses" , 这个地方说明了每两个城市之间的路是固定的,有且只有一条(想到这里,发现哪里是什么最短路,就是要你求两点之间的距离)。
假设u,v为要求距离的两个城市,k表示二者的LCA,那么dis[u] - dis[k] 为u距离LCA的距离,而dis[v] - dis[k] 为v距离LCA的距离,所以dis[u] + dis[v] - 2 * dis[k] 就是两个城市之间的距离,然后其他的步骤就按照LCA算法求出LCA就好,LCA的教程请参考上面的哪个网址,个人觉得讲的很好。
代码区
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include <vector>
using namespace std;
const int inf = 0x3f3f3f3f;
const int max2 = 100 + 10;
const int max3 = 1000 + 10;
const int max4 = 10000 + 10;
typedef struct Edge{
int to;
int val;
Edge(int to = 0 , int val = 0):to(to),val(val){}
}Edge;
vector<Edge>road[4 * max4]; //road[x]保存从x出发的所有道路,road[x][i].to表示这条路的另一个点
int dis[4 * max4]; //dis[x]记录结点x离根结点的距离
int father[4 * max4][15]; //father[x][j]记录从x点向上2^j次层的祖先结点
int depth[4 * max4]; //depth[x]记录点x的深度
int lg[4 * max4]; //log2n 向下取整
void init()
{
memset(dis, 0, sizeof(dis));
memset(father, 0, sizeof(father));
memset(depth, 0, sizeof(depth));
for (int i = 0; i < 4 * max4;i++)
road[i].clear();
}
void dfs(int now,int fa)
{
depth[now] = depth[fa] + 1;
father[now][0] = fa;
//将now点的祖先结点全部记录下来
for (int j = 1; j <= lg[depth[now]] + 1; j++)
father[now][j] = father[father[now][j - 1]][j - 1];
//搜索当前结点的子结点
for (int i = 0; i < road[now].size();i++)
{
if(road[now][i].to != fa) //如果某一条路是当前结点和父结点的,那么没有必要向上搜索
{
dis[road[now][i].to] = dis[now] + road[now][i].val; //子结点到根结点的距离等于父结点到根结点的距离加上这条路的距离
dfs(road[now][i].to, now);
}
}
}
//返回结点u,v的最小公共祖先
int lca(int u,int v)
{
if (depth[u] < depth[v])
swap(u, v);
while (depth[u] != depth[v])
u = father[u][lg[depth[u] - depth[v]]];
if (u == v)
return u;
for (int i = lg[depth[u]];i >= 0;i--)
{
//当两者的某祖先结点不一致的时候,说明还需要继续向上查找
//当u,v位lca的最近子结点的时候,对于任意的father[u][i]都满足
//father[u][i] == father[v][i] ,所以最后u,v为lca的最近子结点
if(father[u][i] != father[v][i])
{
u = father[u][i];
v = father[v][i];
}
}
return father[u][0];
}
int main()
{
//预处理,lg[x]表示log2n向下取整
lg[0] = -1;
for (int i = 1; i < 4 * max4;i++)
lg[i] = lg[i >> 1] + 1;
int t;
scanf("%d",&t);
while(t--)
{
init();
int n, m;
scanf("%d%d", &n, &m);
for (int i = 1; i < n; i++)
{
int s, e, v;
scanf("%d%d%d", &s, &e, &v);
road[s].push_back({ e,v });
road[e].push_back({ s,v });
}
dfs(1, 0); //树中任意一个结点均可以作为根结点,但是不确定结点的个数,而且编号为1的结点所以的树均有,所以将1作为根结点
while(m--)
{
int s, e;
scanf("%d%d", &s, &e);
int k = lca(s, e);
printf("%d\n", dis[s] + dis[e] - 2 * dis[k]);
}
}
return 0;
}
HDU 2586——How far away ?的更多相关文章
- HDU - 2586 How far away ?(LCA模板题)
HDU - 2586 How far away ? Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & ...
- hdu 2586 How far away ?倍增LCA
hdu 2586 How far away ?倍增LCA 题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=2586 思路: 针对询问次数多的时候,采取倍增 ...
- HDU 2586 How far away ?【LCA】
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=2586 How far away ? Time Limit: 2000/1000 MS (Java/Oth ...
- HDU 2586.How far away ?-离线LCA(Tarjan)
2586.How far away ? 这个题以前写过在线LCA(ST)的,HDU2586.How far away ?-在线LCA(ST) 现在贴一个离线Tarjan版的 代码: //A-HDU25 ...
- HDU 2586 How far away ? (LCA)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 LCA模版题. RMQ+LCA: #include <iostream> #incl ...
- hdu - 2586 How far away ?(最短路共同祖先问题)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 最近公共祖先问题~~LAC离散算法 题目大意:一个村子里有n个房子,这n个房子用n-1条路连接起 ...
- HDU 2586 How far away ?(LCA在线算法实现)
http://acm.hdu.edu.cn/showproblem.php?pid=2586 题意:给出一棵树,求出树上任意两点之间的距离. 思路: 这道题可以利用LCA来做,记录好每个点距离根结点的 ...
- HDU 2586 How far away ?(LCA模板 近期公共祖先啊)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 Problem Description There are n houses in the vi ...
- HDU 2586 How far away ?【LCA模板题】
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=2586 题意:给你N个点,M次询问.1~N-1行输入点与点之间的权值,之后M行输入两个点(a,b)之间的最 ...
- hdu 2586 How far away ?(LCA - Tarjan算法 离线 模板题)
How far away ? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
随机推荐
- hash索引
hash算法 哈希表(hash table ,也叫散列表),是根据关键码值(key value)而直接进行访问的数据结构.也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度.这个 ...
- kafka监控指标项
监控配置 kafka基本分为broker.producer.consumer三个子项,每一项的启动都需要用到 $KAFKA_HOME/bin/kafka-run-class.sh 脚本,在该脚本中 ...
- 拉格朗日插值法板子(dls)
namespace polysum { ; ll a[D],f[D],g[D],p[D],p1[D],p2[D],b[D],h[D][],C[D]; ll calcn(int d,ll *a,ll n ...
- JSP中解决session超时跳转到登陆页面并跳出iframe框架或局部区域的方法
当session会话超时,页面请求被重新定位到了登陆界面.但登录界面在iframe中的解决方案:在登录页面中加入下面的js代码: <script type="text/javascri ...
- conda install -c anaconda
有些包在conda默认的channels中不包含,比如cudatoolkit-8.0,cudnn等,这时只需要在conda install指令后加上-c anaconda即可.比如要下载cudatoo ...
- 排序算法总结(java实现)
排序算法 介绍:排序分为内部排序和外部排序,内部排序指在内存中进行的排序过程:外部排序指在外存中进行排序的过程,但是此过程建立在多次访问内存的基础上(分成一段段利用内部排序进行排序). 以下排序均属于 ...
- 通过daemon.json配置docker 2375 API端口,配置私有http仓库
编辑daemon.json vi /etc/docker/daemon.json 配置如下内容即可 { "hosts":[ "tcp://0.0.0.0:2375&quo ...
- Redis数据类型,面试相关
1.Redis最为常用的数据类型主要有以下几种 String Hash List (消息队列) Set (可以用于存储不重复的列表数据) Sorted Set (有序不重复数的列表数据) Pub/Su ...
- windows运维常用命令
devmgmt.msc 设备管理器msconfig 启动项命令mstsc 远程登录diskmgmt.msc 磁盘管理 calc.exe 计算器shutdown -r ...
- Other | 十招教你找到海量PPT模板
转载自:https://www.douban.com/note/330962457/ 问:PPT模板是什么含义? 答: 先假定你们要的是这种网上到处泛滥成灾的主题PPT吧,下面请耐心看到最后,秋叶老师 ...