The Moving Points

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2122    Accepted Submission(s): 884

Problem Description
There are N points in total. Every point moves in certain direction and certain speed. We want to know at what time that the largest distance between any two points would be minimum. And also, we require you to calculate that minimum distance. We guarantee that no two points will move in exactly same speed and direction.
 
Input
The rst line has a number T (T <= 10) , indicating the number of test cases.
For each test case, first line has a single number N (N <= 300), which is the number of points.
For next N lines, each come with four integers Xi, Yi, VXi and VYi (-106 <= Xi, Yi <= 106, -102 <= VXi , VYi <= 102), (Xi, Yi) is the position of the ith point, and (VXi , VYi) is its speed with direction. That is to say, after 1 second, this point will move to (Xi + VXi , Yi + VYi).
 
Output
For test case X, output "Case #X: " first, then output two numbers, rounded to 0.01, as the answer of time and distance.
 
Sample Input
2
2
0 0 1 0
2 0 -1 0
2
0 0 1 0
2 1 -1 0
 
Sample Output
Case #1: 1.00 0.00
Case #2: 1.00 1.00
 
 给出几个点的坐标和xy方向上的坐标分速度,问什么时候两点之间距离最大值最小,可以想到两点之间距离要么一直增大,要么先减小后增大,三分就可以啦
#pragma GCC diagnostic error "-std=c++11"
//#include <bits/stdc++.h>
#define _ ios_base::sync_with_stdio(0);cin.tie(0);
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std; const double eps = 1e-;
const int N= + ;
struct point{
double x, y, vx, vy;
void read(){ cin >> x >> y >> vx >> vy; }
}p[N];
int n; double dist_points(point p1, point p2, double t){
double x = (p1.x + t * p1.vx) - (p2.x + t * p2.vx);
double y = (p1.y + t * p1.vy) - (p2.y + t * p2.vy);
return sqrt(x * x + y * y);
} double cal(double x){
double Max = ;
for(int i = ; i < n; i++)
for(int j = i + ; j < n; j++)
Max = max(Max, dist_points(p[i], p[j], x));
return Max;
} double ternary_search(double L, double R){
if(L > R) swap(L, R);
while(R - L > eps){
double mid1, mid2;
mid1 = (L + R) / ;
mid2 = (mid1 + R) / ;
if(cal(mid1) <= cal(mid2)) R = mid2;
else L = mid1;
}
return (L + R) / ;
}
int main(){ _
int T, Cas = ;
cin >> T;
while(T --){
cin >> n;
for(int i = ; i < n; i++) p[i].read();
double x = ternary_search(, 1e8);
printf("Case #%d: %.2f %.2f\n", ++Cas, x, cal(x));
}
}

HDU-4717 The Moving Points(凸函数求极值)的更多相关文章

  1. HDU 4717 The Moving Points (三分)

    The Moving Points Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  2. HDU 4717 The Moving Points(三分)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4717 题意:给出n个点的坐标和运动速度(包括方向).求一个时刻t使得该时刻时任意两点距离最大值最小. ...

  3. hdu 4717 The Moving Points(第一个三分题)

    http://acm.hdu.edu.cn/showproblem.php?pid=4717 [题意]: 给N个点,给出N个点的方向和移动速度,求每个时刻N个点中任意两点的最大值中的最小值,以及取最小 ...

  4. hdu 4717 The Moving Points(三分+计算几何)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4717 说明下为啥满足三分: 设y=f(x) (x>0)表示任意两个点的距离随时间x的增长,距离y ...

  5. hdu 4717 The Moving Points(三分)

    http://acm.hdu.edu.cn/showproblem.php?pid=4717 大致题意:给出每一个点的坐标以及每一个点移动的速度和方向. 问在那一时刻点集中最远的距离在全部时刻的最远距 ...

  6. HDU 4717 The Moving Points(三分法)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)

    Description There are N points in total. Every point moves in certain direction and certain speed. W ...

  7. HDU 4717 The Moving Points (三分法)

    题意:给n个点的坐标的移动方向及速度,问在之后的时间的所有点的最大距离的最小值是多少. 思路:三分.两点距离是下凹函数,它们的max也是下凹函数.可以三分. #include<iostream& ...

  8. hdu 4717: The Moving Points 【三分】

    题目链接 第一次写三分 三分的基本模板 int SanFen(int l,int r) //找凸点 { ) { //mid为中点,midmid为四等分点 ; ; if( f(mid) > f(m ...

  9. HDOJ 4717 The Moving Points

    The Moving Points Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

随机推荐

  1. CoreData编辑器

    如何你开发iOS使用的是CoreData数据库的话,肯定想要一个可以查看和编辑CoreData数据库的工具,今天给大家推荐一个工具Core-Data-Editor 下载地址:https://githu ...

  2. 添加一个静态JAVA库

    LOCAL_PATH := $(call my-dir) include $(CLEAR_VARS) # Build all java files in the java subdirectory L ...

  3. C++入门经典-例5.7-调用自定义函数交换两变量值,传入指针

    1:代码如下: // 5.7.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> using ...

  4. ES6学习一--ES5

    JSON对象方法 1.将JSON字符串转换成js对象(IE7及以下不支持)(IE7及以下兼容需其他手段) JSON.parse() 2.将js对象转成JSON字符串 JSON.stringify() ...

  5. DAY 3模拟赛

    DAY3 钟皓曦来了! T1 网址压缩 [问题描述] 你是能看到第一题的 friends 呢.           ——hja 众所周知,小葱同学擅长计算,尤其擅长计算组合数,但这个题和组合数没什么关 ...

  6. Windows监控——性能指标详解(转)

    http://blog.csdn.net/yiqin3399/article/details/51730106

  7. linux使用du查看文件夹大小

    du命令用来查看目录或文件所占用磁盘空间的大小.常用选项组合为:du –sh -s不显示该目录下面的文件大小,只显示该目录的大小 -h以人类可读的方式显示. 比如显示work下面的Apache-tom ...

  8. MySQL 5.7.27 MGR 单主/多主+ ProxySQL

    1 MySQL 5.7.27 MGR 多主环境 基础信息如下: centos 6.5/vbox 实例名 A B C IP 10.15.7.29 10.15.7.28 10.15.7.27 实例端口号 ...

  9. CSS3实用指南 初读笔记

    1.7.1  浏览器前缀 当一个浏览器实现了一个新的属性.值或者选择器,而这个特性还不是处于候选推荐标准状态的时候,在属性前面会添加一个前缀以便于它的渲染引擎识别. CSS属性的浏览器前缀:    前 ...

  10. HiMall 3接口鉴权参考

    签名算法 为了防止API调用过程中被黑客恶意篡改,调用任何一个API都需要携带签名,HOP服务端会根据请求参数,对签名进行验证,签名不合法的请求将会被拒绝.TOP目前支持的签名算法只有一种:MD5(s ...