demo.py

import cv2
from detection.mtcnn import MTCNN # 检测图片中的人脸
def test_image(imgpath):
mtcnn = MTCNN('./mtcnn.pb')
img = cv2.imread(imgpath) bbox, landmarks, scores = mtcnn.detect_faces(img) print('total box:', len(bbox))
for box, pts in zip(bbox, landmarks):
box = box.astype('int32')
img = cv2.rectangle(img, (box[1], box[0]), (box[3], box[2]), (255, 0, 0), 3) pts = pts.astype('int32')
for i in range(5):
img = cv2.circle(img, (pts[i + 5], pts[i]), 1, (0, 255, 0), 2)
cv2.imshow('image', img)
cv2.waitKey() # 检测视频中的人脸
def test_camera():
mtcnn = MTCNN('./mtcnn.pb')
cap = cv2.VideoCapture('rtsp://admin:hik12345@192.168.3.160/Streaming/Channels/1')
while True:
ret, img = cap.read()
if not ret:
break
bbox, landmarks, scores = mtcnn.detect_faces(img)
print('total box:', len(bbox), scores)
for box, pts in zip(bbox, landmarks):
box = box.astype('int32')
img = cv2.rectangle(img, (box[1], box[0]), (box[3], box[2]), (255, 0, 0), 3)
pts = pts.astype('int32')
for i in range(5):
img = cv2.circle(img, (pts[i], pts[i + 5]), 1, (0, 255, 0), 2)
cv2.imshow('img', img)
cv2.waitKey(1) if __name__ == '__main__':
# test_image()
test_camera()

mtcnn.py

import tensorflow as tf
from detection.align_trans import get_reference_facial_points, warp_and_crop_face
import numpy as np
import cv2
import detection.face_preprocess as face_preprocess class MTCNN: def __init__(self, model_path, min_size=40, factor=0.709, thresholds=[0.7, 0.8, 0.8]):
self.min_size = min_size
self.factor = factor
self.thresholds = thresholds graph = tf.Graph()
with graph.as_default():
with open(model_path, 'rb') as f:
graph_def = tf.GraphDef.FromString(f.read())
tf.import_graph_def(graph_def, name='')
self.graph = graph
config = tf.ConfigProto(
allow_soft_placement=True,
intra_op_parallelism_threads=4,
inter_op_parallelism_threads=4)
config.gpu_options.allow_growth = True
self.sess = tf.Session(graph=graph, config=config)
self.refrence = get_reference_facial_points(default_square=True) # 人脸检测
def detect_faces(self, img):
feeds = {
self.graph.get_operation_by_name('input').outputs[0]: img,
self.graph.get_operation_by_name('min_size').outputs[0]: self.min_size,
self.graph.get_operation_by_name('thresholds').outputs[0]: self.thresholds,
self.graph.get_operation_by_name('factor').outputs[0]: self.factor
}
fetches = [self.graph.get_operation_by_name('prob').outputs[0],
self.graph.get_operation_by_name('landmarks').outputs[0],
self.graph.get_operation_by_name('box').outputs[0]]
prob, landmarks, box = self.sess.run(fetches, feeds)
return box, landmarks, prob # 对齐获取单个人脸
def align_face(self, img):
ret = self.detect_faces(img)
if ret is None:
return None
bbox, landmarks, prob = ret
if bbox.shape[0] == 0:
return None landmarks_copy = landmarks.copy()
landmarks[:, 0:5] = landmarks_copy[:, 5:10]
landmarks[:, 5:10] = landmarks_copy[:, 0:5]
# print(landmarks[0, :]) bbox = bbox[0, 0:4]
bbox = bbox.astype(int) bbox = bbox[::-1]
bbox_copy = bbox.copy()
bbox[0:2] = bbox_copy[2:4]
bbox[2:4] = bbox_copy[0:2]
# print(bbox) points = landmarks[0, :].reshape((2, 5)).T
# print(points) '''
face_img = cv2.rectangle(img, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 0, 255), 6)
for i in range(5):
pts = points[i, :]
face_img = cv2.circle(face_img, (pts[0], pts[1]), 2, (0, 255, 0), 2)
cv2.imshow('img', face_img)
if cv2.waitKey(100000) & 0xFF == ord('q'):
cv2.destroyAllWindows()
''' warped_face = face_preprocess.preprocess(img, bbox, points, image_size='112,112')
'''
cv2.imshow('face', warped_face) if cv2.waitKey(100000) & 0xFF == ord('q'):
cv2.destroyAllWindows()
'''
# warped_face = cv2.cvtColor(warped_face, cv2.COLOR_BGR2RGB)
# aligned = np.transpose(warped_face, (2, 0, 1))
# return aligned
return warped_face # 对齐获取多个人脸
def align_multi_faces(self, img, limit=None):
boxes, landmarks, _ = self.detect_faces(img)
if limit:
boxes = boxes[:limit]
landmarks = landmarks[:limit] landmarks_copy = landmarks.copy()
landmarks[:, 0:5] = landmarks_copy[:, 5:10]
landmarks[:, 5:10] = landmarks_copy[:, 0:5] # print('landmarks', landmark)
faces = []
for idx in range(len(landmarks)):
'''
landmark = landmarks[idx, :]
facial5points = [[landmark[j], landmark[j + 5]] for j in range(5)]
warped_face = warp_and_crop_face(np.array(img), facial5points, self.refrence, crop_size=(112, 112))
faces.append(warped_face)
'''
bbox = boxes[idx, 0:4]
bbox = bbox.astype(int) bbox = bbox[::-1]
bbox_copy = bbox.copy()
bbox[0:2] = bbox_copy[2:4]
bbox[2:4] = bbox_copy[0:2]
# print(bbox) points = landmarks[idx, :].reshape((2, 5)).T
# print(points)
warped_face = face_preprocess.preprocess(img, bbox, points, image_size='112,112') cv2.imshow('faces', warped_face)
# warped_face = cv2.cvtColor(warped_face, cv2.COLOR_BGR2RGB)
# aligned = np.transpose(warped_face, (2, 0, 1))
faces.append(warped_face) # print('faces',faces)
# print('boxes',boxes)
return faces, boxes, landmarks

MTCNN 人脸检测的更多相关文章

  1. 项目实战 - 原理讲解<-> Keras框架搭建Mtcnn人脸检测平台

    Mtcnn它是2016年中国科学院深圳研究院提出的用于人脸检测任务的多任务神经网络模型,该模型主要采用了三个级联的网络,采用候选框加分类器的思想,进行快速高效的人脸检测.这三个级联的网络分别是快速生成 ...

  2. MTCNN人脸检测 附完整C++代码

    人脸检测 识别一直是图像算法领域一个主流话题. 前年 SeetaFace 开源了人脸识别引擎,一度成为热门话题. 虽然后来SeetaFace 又放出来 2.0版本,但是,我说但是... 没有训练代码, ...

  3. MTCNN人脸检测识别笔记

    论文:Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks 论文链接:https:// ...

  4. MTCNN算法与代码理解—人脸检测和人脸对齐联合学习

    目录 写在前面 算法Pipeline详解 如何训练 损失函数 训练数据准备 多任务学习与在线困难样本挖掘 预测过程 参考 博客:blog.shinelee.me | 博客园 | CSDN 写在前面 主 ...

  5. 第三十七节、人脸检测MTCNN和人脸识别Facenet(附源码)

    在说到人脸检测我们首先会想到利用Harr特征提取和Adaboost分类器进行人脸检测(有兴趣的可以去一看这篇博客第九节.人脸检测之Haar分类器),其检测效果也是不错的,但是目前人脸检测的应用场景逐渐 ...

  6. 人脸检测——MTCNN

    人脸检测——MTCNN .

  7. 基于MTCNN多任务级联卷积神经网络进行的人脸识别 世纪晟人脸检测

    神经网络和深度学习目前为处理图像识别的许多问题提供了最佳解决方案,而基于MTCNN(多任务级联卷积神经网络)的人脸检测算法也解决了传统算法对环境要求高.人脸要求高.检测耗时高的弊端. 基于MTCNN多 ...

  8. 使用TensorRT对人脸检测网络MTCNN进行加速

    前言 最近在做人脸比对的工作,需要用到人脸关键点检测的算法,比较成熟和通用的一种算法是 MTCNN,可以同时进行人脸框选和关键点检测,对于每张脸输出 5 个关键点,可以用来进行人脸对齐. 问题 刚开始 ...

  9. caffe_实战之两个简单的例子(物体分类和人脸检测)

    一.物体分类: 这里使用的是caffe官网中自带的例子,我这里主要是对代码的解释~ 首先导入一些必要的库: import caffe import numpy as np import matplot ...

随机推荐

  1. margin属性以及垂直外边距重叠问题

       盒子的margin属性         盒子的外边距margin 指的是当前盒子与其他盒子之间的距离,环绕在盒子周围的空白区域,属于不可见的区域,,不会影响到可见框的大小,而是会影响到盒子的位置 ...

  2. Xcode 代码注释

    /** * 生成二维码 * * @param data 二维码数据 * @param size 二维码大小 * @param color 二维码颜色 * @param backgroundColor ...

  3. JS&ASPDotNet_大文件上传问题

    HTML部分 <%@PageLanguage="C#"AutoEventWireup="true"CodeBehind="index.aspx. ...

  4. luogu P1217 [USACO1.5]回文质数 Prime Palindromes x

    P1217 [USACO1.5]回文质数 Prime Palindromes 题目描述 因为151既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151 是回文质数. 写一个程序来找 ...

  5. SpringBoot整合knife4j

    官网说明及用法: 简介 swagger-bootstrap-ui是springfox-swagger的增强UI实现,为Java开发者在使用Swagger的时候,能拥有一份简洁.强大的接口文档体验 核心 ...

  6. js返回上一页并刷新的几种方法

    1.返回上一页 1)<a href="javascript:history.go(-1)"></a> 2)<a href="javascri ...

  7. [POJ1637]Sightseeing tour:混合图欧拉回路

    分析 混合图欧拉回路问题. 一个有向图有欧拉回路当且仅当图连通并且对于每个点,入度\(=\)出度. 入度和出度相等可以联想到(我也不知道是怎么联想到的)网络流除了源汇点均满足入流\(=\)出流.于是可 ...

  8. Oracle Like子句

    Oracle Like子句 作者:初生不惑 Oracle基础 评论:0 条 Oracle技术QQ群:175248146 在本教程中,您将学习如何使用Oracle LIKE运算符来测试列中的值是否与指定 ...

  9. 存在不同浏览器间的JS兼容总结

    2016年2月19日个人博客文章--迁移到segmentfault 当我们在编写JS用于处理事件时,由于考虑到不同浏览器间Js代码兼容不同,代码不易记忆,于是做出如下整理.(当然以后还会增加更新的.. ...

  10. 在Ubuntu16.04下安装SourceInsight和WeChat

    1 使用Wine安装SourceInsight4 1.1 安装Wine $ sudo apt-get install wine 1.2 安装SourceInsight 下载SourceInsight软 ...