多线性方程组(张量)迭代算法的原理请看这里:原理部分请留言,不方便公开分享

Jacobi迭代算法里有详细注释:多线性方程组迭代算法——Jacobi迭代算法的Python实现

import numpy as np
import time

1.1 Gauss-Seidel迭代算法

def GaussSeidel_tensor_V2(A,b,Delta,m,n,M):
start=time.perf_counter()
find=0
X=np.ones(n)
d=np.ones(n)
m1=m-1
m2=2-m
for i in range(M):
print('X',X)
x=np.copy(X)
#迭代更新
for j in range(n):
a=np.copy(A)
for k in range(m-2):
a=np.dot(a,x)
for k in range(n):
d[k]=a[k,k]
a[k,k]=m2*a[k,k]
x[j]=(b[j]-np.dot(a[j],x))/(m1*d[j])
#判断是否满足精度要求
if np.max(np.fabs(X-x))<Delta:
find=1
break
X=np.copy(x)
end=time.perf_counter()
print('时间:',end-start)
print('迭代',i)
return X,find,i,end-start

1.2张量A的生成函数和向量b的生成函数:

def Creat_A(m,n):#生成张量A
size=np.full(m, n)
X=np.ones(n)
while 1:
#随机生成给定形状的张量A
A=np.random.randint(-49,50,size=size)
#判断Dx**(m-2)是否非奇异,如果是,则满足要求,跳出循环
D=np.copy(A)
for i1 in range(n):
for i2 in range(n):
if i1!=i2:
D[i1,i2]=0
for i in range(m-2):
D=np.dot(D,X)
det=np.linalg.det(D)
if det!=0:
break
#将A的对角面张量扩大十倍,使对角面占优
for i1 in range(n):
for i2 in range(n):
if i1==i2:
A[i1,i2]=A[i1,i2]*10
print('A:')
print(A)
return A #由A和给定的X根据Ax**(m-1)=b生成向量b
def Creat_b(A,X,m):
a=np.copy(A)
for i in range(m-1):
a=np.dot(a,X)
print('b:')
print(a)
return a

1.3 对称张量S的生成函数:

def Creat_S(m,n):#生成对称张量B
size=np.full(m, n)
S=np.zeros(size)
print('S',S)
for i in range(4):
#生成n为向量a
a=np.random.random(n)*np.random.randint(-5,6)
b=np.copy(a)
#对a进行m-1次外积,得到秩1对称张量b
for j in range(m-1):
b=outer(b,a)
#将不同的b叠加得到低秩对称张量S
S=S+b
print('S:')
print(S)
return S
def outer(a,b):
c=[]
for i in b:
c.append(i*a)
return np.array(c)
return a

1.4 实验二

def test_2():
Delta=0.01#精度
m=3#A的阶数
n=3#A的维数
M=200#最大迭代步数
X_real=np.array( [2,3,4])
A=Creat_A(m,n)
b=Creat_b(A,X_real,m)
GaussSeidel_tensor_V2(A,b,Delta,m,n)

多线性方程组迭代算法——Gauss-Seidel迭代算法的Python实现的更多相关文章

  1. gauss——seidel迭代

    转载:https://blog.csdn.net/wangxiaojun911/article/details/6890282 Gauss–Seidelmethod 对应于形如Ax = b的方程(A为 ...

  2. 梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python)

    梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python) http://blog.csdn.net/liulingyuan6/article/details ...

  3. Floyd-Warshall算法,简称Floyd算法

    Floyd-Warshall算法,简称Floyd算法,用于求解任意两点间的最短距离,时间复杂度为O(n^3). 使用条件&范围通常可以在任何图中使用,包括有向图.带负权边的图. Floyd-W ...

  4. 链接分析算法之:HITS算法

    链接分析算法之:HITS算法     HITS(HITS(Hyperlink - Induced Topic Search) ) 算法是由康奈尔大学( Cornell University ) 的Jo ...

  5. 机器学习:Python实现聚类算法(一)之AP算法

    1.算法简介 AP(Affinity Propagation)通常被翻译为近邻传播算法或者亲和力传播算法,是在2007年的Science杂志上提出的一种新的聚类算法.AP算法的基本思想是将全部数据点都 ...

  6. 静态频繁子图挖掘算法用于动态网络——gSpan算法研究

    摘要 随着信息技术的不断发展,人类可以很容易地收集和储存大量的数据,然而,如何在海量的数据中提取对用户有用的信息逐渐地成为巨大挑战.为了应对这种挑战,数据挖掘技术应运而生,成为了最近一段时期数据科学的 ...

  7. 机器学习算法总结(六)——EM算法与高斯混合模型

    极大似然估计是利用已知的样本结果,去反推最有可能(最大概率)导致这样结果的参数值,也就是在给定的观测变量下去估计参数值.然而现实中可能存在这样的问题,除了观测变量之外,还存在着未知的隐变量,因为变量未 ...

  8. 机器学习算法总结(五)——聚类算法(K-means,密度聚类,层次聚类)

    本文介绍无监督学习算法,无监督学习是在样本的标签未知的情况下,根据样本的内在规律对样本进行分类,常见的无监督学习就是聚类算法. 在监督学习中我们常根据模型的误差来衡量模型的好坏,通过优化损失函数来改善 ...

  9. 数据挖掘十大算法--K-均值聚类算法

    一.相异度计算  在正式讨论聚类前,我们要先弄清楚一个问题:怎样定量计算两个可比較元素间的相异度.用通俗的话说.相异度就是两个东西区别有多大.比如人类与章鱼的相异度明显大于人类与黑猩猩的相异度,这是能 ...

  10. 机器学习:Python实现聚类算法(二)之AP算法

    1.算法简介 AP(Affinity Propagation)通常被翻译为近邻传播算法或者亲和力传播算法,是在2007年的Science杂志上提出的一种新的聚类算法.AP算法的基本思想是将全部数据点都 ...

随机推荐

  1. centos6中安装RabbitMQ

    一.安装环境步骤需知 第一步 安装erlang环境 第二步 安装RabbitMQ 二.安装erlang环境 1)安装编译环境,和基础依赖包 yum -y install make gcc gcc-c+ ...

  2. docker ssh连接不上

    docker ssh连接报下面的错 Last login: Thu Apr 13 09:17:23 2017 from localhost Connection to 127.0.0.1 closed ...

  3. ES2015箭头函数与普通函数对比理解

    直接返回表达式 var odds = evens.map(v => v + 1); var nums = evens.map((v, i) => v + i); var odds = ev ...

  4. 20180315-Python面向对象编程设计和开发

    1.在子类中调用父类的方法 在子类派生出的新方法中,往往需要重用父类的方法,我们有两种实现方式: 方式一:父类名.父类方法() Animal.__init__(self,name) 方式二:super ...

  5. windows10安装docker[含百度网盘docker安装包]

    在win10上安装 docker(比较简单) 安装步骤: 现在 Docker 有专门的 Win10 专业版系统的安装包,需要开启Hyper-V. 1.开启 Hyper-V 程序和功能 启用或关闭Win ...

  6. 134-基于TMS320C6678、FPGA XC5VSX95T的一路Full模式Camera Link图像理平台

    基于TMS320C6678.FPGA XC5VSX95T的一路Full模式Camera Link图像理平台 一.板卡概述 该板卡采用TI公司新一代DSP TMS320C6678,结合FPGA,型号为X ...

  7. docker初学

    Docker基础知识 1. Docker基础知识点 1.1 什么是Docker Docker是一个开源的引擎,可以轻松的为任何应用创建一个轻量级的.可移植的.自给自足的容器.(集装箱原理) 1.2 什 ...

  8. 罗技K380使用手册

    Ipad最佳伴侣|码字神器|罗技K380|附使用指南 ———— 为了方便平时在家处理工作➕写小红书笔记,年初买了个Ipad2018 我以前买过一个罗技的K480,因为太重了不方便携带,于是又入了K38 ...

  9. 我们为什么选择Ceph来建立块存储

    我们为什么选择Ceph来建立块存储?国内知名黑客组织东方联盟是这样回答的,卷管理器的大小和增长受到管理程序的驱动器补充的限制,与其他Droplet共享.一旦Droplet被摧毁,储存就会被释放.术语“ ...

  10. Java中File类重修

    IO流 概述 io流:输入输出流(input/output).流是一组有顺序的,有起点和终点的字节集合,是对各种数据传输的总称或抽象.即数据在两设备之间的传输称为流.流的本质是数据传输. InputS ...