Card

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 191    Accepted Submission(s): 52
Special Judge

Problem Description
There are x cards on the desk, they are numbered from 1 to x. The score of the card which is numbered i(1<=i<=x) is i. Every round BieBie picks one card out of the x cards,then puts it back. He does the same operation for b rounds. Assume that the score of the j-th card he picks is Sj . You are expected to calculate the expectation of the sum of the different score he picks.
 
Input
Multi test cases,the first line of the input is a number T which indicates the number of test cases. 
In the next T lines, every line contain x,b separated by exactly one space.

[Technique specification]
All numbers are integers.
1<=T<=500000
1<=x<=100000
1<=b<=5

 
Output
Each case occupies one line. The output format is Case #id: ans, here id is the data number which starts from 1,ans is the expectation, accurate to 3 decimal places.
See the sample for more details.
 
Sample Input
2
2 3
3 3
 
Sample Output
Case #1: 2.625
Case #2: 4.222

Hint

For the first case, all possible combinations BieBie can pick are (1, 1, 1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2)
For (1,1,1),there is only one kind number i.e. 1, so the sum of different score is 1.
However, for (1,2,1), there are two kind numbers i.e. 1 and 2, so the sum of different score is 1+2=3.
So the sums of different score to corresponding combination are 1,3,3,3,3,3,3,2
So the expectation is (1+3+3+3+3+3+3+2)/8=2.625

 
 
我的做法是把它想象成一棵 m 层的 x 叉树(底层有 x^b 个叶子结点), 然后计算每个数字(1~x )要加的次数。
对于( i = 1 ~  x ) ..  
在第1层就要加 x^( m-1 ) 次 。
第2层就要加 x^(m-2) *(x-1) 次 。
....
第 i 层就要加 x^( m - i ) * (x-1)^( i - 1 )。
....
第m层就要加 x^(0) *(x-1)^(m-1) 次。
 
 以 i = 1 为例 ,如下图:
 
那么每个数加的次数就是  x^i * ( x - 1 )^( m - i - 1 ) 次 [ 0 <= i < m ]。
总共加的和 sum = sigma(j) * x^i * ( x - 1 )^( m - i - 1 ) 次 [ 1<=j <= x , 0 <= i < m ]。
sigma(j) [1<=j <= x ] = (1+x)*x/2。
那么 sum = (1+x) * x / 2 * x^i * ( x - 1 )^( m - i - 1 ) , [ 0 <= i < m ] 。 
那么期望 Ex = sum / ( x ^ n ) 。
 
 
官方题解是给出普通用概率方法求 :
设Xi代表分数为i的牌在b次操作中是否被选到,Xi=1为选到,Xi=0为未选到
那么期望EX=1*X1+2*X2+3*X3+…+x*Xx
Xi在b次中被选到的概率是1-(1-1/x)^b
那么E(Xi)= 1-(1-1/x)^b
那么EX=1*E(X1)+2*E(X2)+3*E(X3)+…+x*E(Xx)=(1+x)*x/2*(1-(1-1/x)^b)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <stack>
#include <algorithm>
using namespace std;
#define root 1,n,1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define lr rt<<1
#define rr rt<<1|1
typedef long long LL;
typedef pair<int,int>pii;
#define X first
#define Y second
const int oo = 1e9+;
const double PI = acos(-1.0);
const double eps = 1e- ;
const int N = ;
double n ;int m ;
void Run() {
scanf("%lf%d",&n,&m);
double avg = ( 1.0 + n ) * n / 2.0 * pow( 1.0 / n , (double) m ) , res = ;
for( int i = ; i < m ; ++i ) {
res += avg * pow( n - 1.0 , (double)i )*pow( (double)n, m-i-1.0 );
}
printf("%.3lf\n",res);
}
int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif // LOCAL
ios::sync_with_stdio(false);
int _ , cas = ; scanf("%d",&_);
while( _-- ){
printf("Case #%d: ",cas++); Run();
}
}
 

HDU 5159 Card( 计数 期望 )的更多相关文章

  1. hdu 5159 Card (期望)

    Problem Description There are x cards on the desk, they are numbered from 1 to x. The score of the c ...

  2. HDU 5159 Card (概率求期望)

    B - Card Time Limit:5000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Sta ...

  3. HDU 4336 Card Collector 期望dp+状压

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4336 Card Collector Time Limit: 2000/1000 MS (Java/O ...

  4. hdu 4336 Card Collector(期望 dp 状态压缩)

    Problem Description In your childhood, people in the famous novel Water Margin, you will win an amaz ...

  5. HDU 5159 Card

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5159 题解: 考虑没一个数的贡献,一个数一次都不出现的次数是(x-1)^b,而总的排列次数是x^b, ...

  6. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  7. hdu 5868 Polya计数

    Different Circle Permutation Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 262144/262144 K ...

  8. hdu 2865 Polya计数+(矩阵 or 找规律 求C)

    Birthday Toy Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  9. Card Collector(期望+min-max容斥)

    Card Collector(期望+min-max容斥) Card Collector woc居然在毫不知情的情况下写出一个min-max容斥 题意 买一包方便面有几率附赠一张卡,有\(n\)种卡,每 ...

随机推荐

  1. 【JAVA】毕向东Java基础视频教程-笔记

    传智播客-毕向东Java基础视频教程 <2013年-33days>版-学习代码记录 链接: GitHub库:JavaBXD33 目录 01-Java基础知识 02-Java对象细节 03- ...

  2. C语言如何打印出%

    1. 敲ASCII码,但系我记不住呀! 2. 两个%%: #include <stdio.h> int main() { printf("%%\n"); printf( ...

  3. 记录混合APP开发遇到的坑!!

    1.在IOS中给body绑定click事件会失效 2.在IOS中<div contenteditable="true"></div>中点击时可以弹出键盘但是 ...

  4. Tesseract-OCR识别中文与训练字库

    转自:https://www.cnblogs.com/lcawen/articles/7040005.html 关于中文的识别,效果比较好而且开源的应该就是Tesseract-OCR了,所以自己亲身试 ...

  5. 四、局域网连接SqlServer

    一.局域网连接SqlServer 一台服务器上装有四个数据库的时候,我们可以通过IP\实例名的方式进行访问. navicat 连接sqlserver数据库

  6. CentOS 6.5之SSH 免密码登录

    0.说明 这里为了方便说明问题,假设有A和B两台安装了centos6.5的主机.目标是实现A.B两台主机分别能够通过ssh免密码登录到对方主机.不同主机的配置过程一样,这里介绍A主机的配置过程. 事先 ...

  7. html5 实例渐变

    代码实例: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF ...

  8. HTML知识梳理(笔记)

    HTML常见元素 meta 定义和用法<meta> 元素可提供有关页面的元信息(meta-information),比如针对搜索引擎和更新频度的描述和关键词. <meta> 标 ...

  9. springboot+jsp项目实例(第二弹)(成功)

    1.创建spring boot项目,使用idea自带的spring initializr创建Spring boot的maven项目(我是先创建了一个空的项目). 开始创建Spring boot项目,点 ...

  10. Ubuntu查找软件命令

    查找软件: apt-cache search <your search item>