题目描述

  $MYC$在$NOI2018$中,遇到了$day1T2$这样一个题,题目是让你求有多少“好”的排列。$MYC$此题没有获得高分,感到非常惭愧,于是回去专心研究排列了。如今数排列的题对$MYC$来说已经是小菜一碟了。于是$MYC$想考考你,扔给你了一个非常$naive$的数排列题给你。
  给定一个$\{0,1,2,3,...,n-1\}$的排列$p$。一个$\{0,1,2,...,n-2\}$的排列$q$被认为是优美的排列,当且仅当$q$满足下列条件:
  对排列$s=\{0,1,2,3,...,n-1\}$进行$n–1$次交换。
  $1.$交换$s[q_0],s[q_0+1]$
  $2.$交换$s[q_1],s[q_1+1]$
  ...
  最后能使得排列$s=p$。
  问有多少个优美的排列,答案对$10^9+7$取模。

原题见:$SRM517-600$


输入格式

第一行一个正整数$n$。
第二行$n$个整数代表排列$p$。


输出格式

仅一行表示答案。


样例

样例输入:

3
1 2 0

样例输出:

1


数据范围与提示

样例解释:

$q=\{0,1\}\{0,1,2\}\rightarrow\{1,0,2\}\rightarrow\{1,2,0\}$
$q=\{1,0\}\{0,1,2\}\rightarrow\{0,2,1\}\rightarrow\{2,0,1\}$

数据范围:

$20\%$:$n\leqslant 10$
$50\%$:$n\leqslant 50$
$70\%$:$n\leqslant 300$
$100\%$:$n\leqslant 5,000$


题解

题目可以转化为:一个大小为$n-1$的排列,某些地方限制了相邻两数的大小关系,求方案数。

考虑$DP$,设$dp[i][j]$表示进行到了第$i$个数,第$i$个数在前$i$个数中是第$j$小的方案数。

可以预处理出来哪些位置需要往左或右移即可。

注意一些限制,以向左移为例,第$i$次交换的位置要在第$i-1$次交换之前,反之同理。

这样做出来时间复杂度是$\Theta(n^3)$的,前缀和优化即可。

因为数据点没有给不满足的情况,所以下面代码中没有判不满足的情况,即$pos_i=i$。

时间复杂度:$\Theta(n^2)$。

期望得分:$100$分。

实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
using namespace std;
const int mod=1000000007;
int n;
int a[5001];
bool com[5001];
long long dp[5001][5001],g[5001][5001];
long long ans;
int main()
{
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
for(int i=0;i<n;i++)
if(i<a[i]){com[i-1]=1;com[a[i]-1]=1;}
else for(int j=a[i];j<i-1;j++)com[j]=1;
dp[0][1]=g[0][1]=1;
for(int i=1;i<n-1;i++)
for(int j=1;j<=i+1;j++)
{
if(com[i-1])dp[i][j]=(dp[i][j]+g[i-1][i]-g[i-1][j-1]+mod)%mod;
else dp[i][j]=(dp[i][j]+g[i-1][j-1])%mod;
g[i][j]=(g[i][j-1]+dp[i][j])%mod;
}
for(int i=1;i<n;i++)ans=(ans+dp[n-2][i])%mod;
printf("%lld",ans);
return 0;
}

rp++

[CSP-S模拟测试]:毛二琛(DP)的更多相关文章

  1. 「10.13」毛一琛(meet in the middle)·毛二琛(DP)·毛三琛(二分+随机化???)

    A. 毛一琛 考虑到直接枚举的话时间复杂度很高,我们运用$meet\ in\ the\ middle$的思想 一般这种思想看似主要用在搜索这类算法中 发现直接枚举时间复杂度过高考虑枚举一半另一半通过其 ...

  2. [CSP-S模拟测试]:毛三琛(随机化+二分答案)

    题目传送门(内部题69) 输入格式 第一行正整数$n,P,k$.第二行$n$个自然数$a_i$.$(0\leqslant a_i<P)$. 输出格式 仅一个数表示最重的背包的质量. 样例 样例输 ...

  3. [CSP-S模拟测试]:毛一琛(meet in the middle)

    题目描述 历史学考后,$MYC$和$ztr$对答案,发现选择题他们没有一道选的是一样的.最后他们都考了个$C$.现在问题来了,假设他们五五开,分数恰好一样(问答题分数也恰好一样,只考虑选择题).已知考 ...

  4. NOIP 模拟 $30\; \rm 毛二琛$

    题解 \(by\;zj\varphi\) 原题问的就是对于一个序列,其中有的数之间有大小关系限制,问有多少种方案. 设 \(dp_{i,j}\) 表示在前 \(i\) 个数中,第 \(i\) 个的排名 ...

  5. [CSP-S模拟测试]:w(树上DP)

    题目背景 $\frac{1}{4}$遇到了一道水题,双完全不会做,于是去请教小$D$.小$D$看了${0.607}^2$眼就切掉了这题,嘲讽了$\frac{1}{4}$一番就离开了.于是,$\frac ...

  6. [CSP-S模拟测试]:B(期望DP)

    题目传送门(内部题151) 输入格式 第一行一个整数$N$. 第二行$N$个整数,第$i$个为$a_i$. 输出格式 一行一个整数,表示答案.为避免精度误差,答案对$323232323$取模. 即设答 ...

  7. [CSP-S模拟测试]:密码(数位DP+库默尔定理)

    题目描述 为了揭穿$SERN$的阴谋,$Itaru$黑进了$SERN$的网络系统.然而,想要完全控制$SERN$,还需要知道管理员密码.$Itaru$从截获的信息中发现,$SERN$的管理员密码是两个 ...

  8. [CSP-S模拟测试]:硬币(博弈论+DP+拓展域并查集)

    题目传送门(内部题135) 输入格式 第一行包含一个整数$T$,表示数据组数. 对于每组数据,第一行两个整数$h,w$,表示棋盘大小. 接下来$h$行,每行一个长度为$w$的字符串,每个位置由为$o, ...

  9. [CSP-S模拟测试]:军训队列(DP+乱搞)

    题目描述 有$n$名学生参加军训,军训的一大重要内容就是走队列,而一个队列的不规整程度是该队中最高的学生的身高与最矮的学生的身高差值的平方.现在要将$n$名参加军训的学生重新分成$k$个队列,每个队列 ...

随机推荐

  1. [转帖]Oracle 查询各表空间使用情况--完善篇

    Oracle 查询各表空间使用情况--完善篇 链接:http://blog.itpub.net/28602568/viewspace-1770577/ 标题: Oracle 查询各表空间使用情况--完 ...

  2. Skiing POJ 3037 很奇怪的最短路问题

    Skiing POJ 3037 很奇怪的最短路问题 题意 题意:你在一个R*C网格的左上角,现在问你从左上角走到右下角需要的最少时间.其中网格中的任意两点的时间花费可以计算出来. 解题思路 这个需要发 ...

  3. thinkphp整合Ueditor编辑器

    编辑器下载地址:http://ueditor.baidu.com/website/download.html#ueditor 放在项目Public或者入口同级目录均可. 前台代码 <div cl ...

  4. 环境变量和Path环境变量

    环境变量 百度百科下的定义 一般是指在操作系统中用来指定操作系统运行环境的一些参数,如:临时文件夹位置和系统文件夹位置等. 环境变量是在操作系统中一个具有特定名字的对象,它包含了一个或者多个应用程序所 ...

  5. React 使用相对于根目录进行引用组件

    在对自己开发的组件中经常会做诸如以下的引用: import genFetchEntryListArgs from '../../../utils/table/genFetchEntryListArgs ...

  6. Delphi中各个包中包含的控件

    经常有朋友提这样的问题,“我原来在delphi5或者delphi6中用的很熟的控件到哪里去了?是不是在delphi7中没有了呢?这是不是意味着我以前写的代码全都不能够移植到delphi7中来了呢?是不 ...

  7. ASP.NET中数据库数据导入Excel并打印(2)

    大家可能觉得上面的代码比较复杂,因为上面对于对打印要求比较高的应用,是十分有效的.如果只是单单对数据进行导出,还可以使用简单的格式,比如使用以下的代码:      Private Sub Page_L ...

  8. arcgis server10.2发布地图服务报错

    发布地图服务时,读取了本机电脑中的切片方案.发布服务,报打包成功,但发布失败错误. 解决办法:给arcgis账户,赋予读写权限即可.重复发布服务,成功发布.

  9. jQuery实现动态时间

    <!DOCTYPE html> <html lang="zh-cn"> <head> <meta charset="UTF-8& ...

  10. CPM、CPC、CPA、PFP、CPS、CPL、CPR等广告术语是什么意思

    CPM.CPC.CPA.PFP.CPS.CPL.CPR等广告术语是什么意思 一个网络媒体(网站)会包含有数十个甚至成千上万个页面,网络广告所投放的位置和价格 就牵涉到特定的页面以及浏览人数的多寡.这好 ...