题目描述

  $MYC$在$NOI2018$中,遇到了$day1T2$这样一个题,题目是让你求有多少“好”的排列。$MYC$此题没有获得高分,感到非常惭愧,于是回去专心研究排列了。如今数排列的题对$MYC$来说已经是小菜一碟了。于是$MYC$想考考你,扔给你了一个非常$naive$的数排列题给你。
  给定一个$\{0,1,2,3,...,n-1\}$的排列$p$。一个$\{0,1,2,...,n-2\}$的排列$q$被认为是优美的排列,当且仅当$q$满足下列条件:
  对排列$s=\{0,1,2,3,...,n-1\}$进行$n–1$次交换。
  $1.$交换$s[q_0],s[q_0+1]$
  $2.$交换$s[q_1],s[q_1+1]$
  ...
  最后能使得排列$s=p$。
  问有多少个优美的排列,答案对$10^9+7$取模。

原题见:$SRM517-600$


输入格式

第一行一个正整数$n$。
第二行$n$个整数代表排列$p$。


输出格式

仅一行表示答案。


样例

样例输入:

3
1 2 0

样例输出:

1


数据范围与提示

样例解释:

$q=\{0,1\}\{0,1,2\}\rightarrow\{1,0,2\}\rightarrow\{1,2,0\}$
$q=\{1,0\}\{0,1,2\}\rightarrow\{0,2,1\}\rightarrow\{2,0,1\}$

数据范围:

$20\%$:$n\leqslant 10$
$50\%$:$n\leqslant 50$
$70\%$:$n\leqslant 300$
$100\%$:$n\leqslant 5,000$


题解

题目可以转化为:一个大小为$n-1$的排列,某些地方限制了相邻两数的大小关系,求方案数。

考虑$DP$,设$dp[i][j]$表示进行到了第$i$个数,第$i$个数在前$i$个数中是第$j$小的方案数。

可以预处理出来哪些位置需要往左或右移即可。

注意一些限制,以向左移为例,第$i$次交换的位置要在第$i-1$次交换之前,反之同理。

这样做出来时间复杂度是$\Theta(n^3)$的,前缀和优化即可。

因为数据点没有给不满足的情况,所以下面代码中没有判不满足的情况,即$pos_i=i$。

时间复杂度:$\Theta(n^2)$。

期望得分:$100$分。

实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
using namespace std;
const int mod=1000000007;
int n;
int a[5001];
bool com[5001];
long long dp[5001][5001],g[5001][5001];
long long ans;
int main()
{
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
for(int i=0;i<n;i++)
if(i<a[i]){com[i-1]=1;com[a[i]-1]=1;}
else for(int j=a[i];j<i-1;j++)com[j]=1;
dp[0][1]=g[0][1]=1;
for(int i=1;i<n-1;i++)
for(int j=1;j<=i+1;j++)
{
if(com[i-1])dp[i][j]=(dp[i][j]+g[i-1][i]-g[i-1][j-1]+mod)%mod;
else dp[i][j]=(dp[i][j]+g[i-1][j-1])%mod;
g[i][j]=(g[i][j-1]+dp[i][j])%mod;
}
for(int i=1;i<n;i++)ans=(ans+dp[n-2][i])%mod;
printf("%lld",ans);
return 0;
}

rp++

[CSP-S模拟测试]:毛二琛(DP)的更多相关文章

  1. 「10.13」毛一琛(meet in the middle)·毛二琛(DP)·毛三琛(二分+随机化???)

    A. 毛一琛 考虑到直接枚举的话时间复杂度很高,我们运用$meet\ in\ the\ middle$的思想 一般这种思想看似主要用在搜索这类算法中 发现直接枚举时间复杂度过高考虑枚举一半另一半通过其 ...

  2. [CSP-S模拟测试]:毛三琛(随机化+二分答案)

    题目传送门(内部题69) 输入格式 第一行正整数$n,P,k$.第二行$n$个自然数$a_i$.$(0\leqslant a_i<P)$. 输出格式 仅一个数表示最重的背包的质量. 样例 样例输 ...

  3. [CSP-S模拟测试]:毛一琛(meet in the middle)

    题目描述 历史学考后,$MYC$和$ztr$对答案,发现选择题他们没有一道选的是一样的.最后他们都考了个$C$.现在问题来了,假设他们五五开,分数恰好一样(问答题分数也恰好一样,只考虑选择题).已知考 ...

  4. NOIP 模拟 $30\; \rm 毛二琛$

    题解 \(by\;zj\varphi\) 原题问的就是对于一个序列,其中有的数之间有大小关系限制,问有多少种方案. 设 \(dp_{i,j}\) 表示在前 \(i\) 个数中,第 \(i\) 个的排名 ...

  5. [CSP-S模拟测试]:w(树上DP)

    题目背景 $\frac{1}{4}$遇到了一道水题,双完全不会做,于是去请教小$D$.小$D$看了${0.607}^2$眼就切掉了这题,嘲讽了$\frac{1}{4}$一番就离开了.于是,$\frac ...

  6. [CSP-S模拟测试]:B(期望DP)

    题目传送门(内部题151) 输入格式 第一行一个整数$N$. 第二行$N$个整数,第$i$个为$a_i$. 输出格式 一行一个整数,表示答案.为避免精度误差,答案对$323232323$取模. 即设答 ...

  7. [CSP-S模拟测试]:密码(数位DP+库默尔定理)

    题目描述 为了揭穿$SERN$的阴谋,$Itaru$黑进了$SERN$的网络系统.然而,想要完全控制$SERN$,还需要知道管理员密码.$Itaru$从截获的信息中发现,$SERN$的管理员密码是两个 ...

  8. [CSP-S模拟测试]:硬币(博弈论+DP+拓展域并查集)

    题目传送门(内部题135) 输入格式 第一行包含一个整数$T$,表示数据组数. 对于每组数据,第一行两个整数$h,w$,表示棋盘大小. 接下来$h$行,每行一个长度为$w$的字符串,每个位置由为$o, ...

  9. [CSP-S模拟测试]:军训队列(DP+乱搞)

    题目描述 有$n$名学生参加军训,军训的一大重要内容就是走队列,而一个队列的不规整程度是该队中最高的学生的身高与最矮的学生的身高差值的平方.现在要将$n$名参加军训的学生重新分成$k$个队列,每个队列 ...

随机推荐

  1. spring -boot定时任务 quartz 基于 MethodInvokingJobDetailFactoryBean 实现

    spring 定时任务 quartz 基于  MethodInvokingJobDetailFactoryBean 实现 依赖包 如下 <dependencies> <depende ...

  2. [Codeforces 1228E]Another Filling the Grid (排列组合+容斥原理)

    [Codeforces 1228E]Another Filling the Grid (排列组合+容斥原理) 题面 一个\(n \times n\)的格子,每个格子里可以填\([1,k]\)内的整数. ...

  3. shell学习笔记1---shell编程基础

    Shell是什么? Shell 是一个应用程序,它连接了用户和 Linux 内核,让用户能够更加高效.安全.低成本地使用 Linux 内核,这就是 Shell 的本质. Shell 本身并不是内核的一 ...

  4. 05: zabbix 监控配置

    目录:zabbix其他篇 01: 安装zabbix server 02:zabbix-agent安装配置 及 web界面管理 03: zabbix API接口 对 主机.主机组.模板.应用集.监控项. ...

  5. js日期格式验证

    js日期格式验证 <input type="text" maxLength='10' onkeyup='checkDate(this.value,jQuery(this)); ...

  6. ASP.NET的面包屑导航控件、树形导航控件、菜单控件

    原文:http://blog.csdn.net/pan_junbiao/article/details/8579293 ASP.NET的面包屑导航控件.树形导航控件.菜单控件. 1. 面包屑导航控件— ...

  7. vue中使用better-scroll滚动条插件

    应用场景: overflow: hidden会让超出的部分隐藏,并且无法拖拽,所以可使用插件让长列表限定的区域滚动拖拽. 参考:https://zhuanlan.zhihu.com/p/2740702 ...

  8. Python numpy插入、读取至postgreSQL数据库中bytea类型字段

    安装psycopg2模块,此模块用于连接PostgreSQL数据库 ​pip install psycopg2 # -*- coding: utf-8 -*- import psycopg2 impo ...

  9. 时钟管脚设置问题 xilinx ERROR:Place:864 - Incompatible IOB's are locked to the same bank 0

    ERROR:Place:1108 - A clock IOB / BUFGMUX clock component pair have been found   that are not placed ...

  10. Nginx优化_数据包头部信息过大问题

    如果客户端发出请求的URL头部信息过大,网站将不能及时响应,并通过状态码414报错. <center><h1>414 Request-URI Too Large</h1& ...