【PyTorch】PyTorch中的梯度累加
PyTorch中的梯度累加
使用PyTorch实现梯度累加变相扩大batch
PyTorch中在反向传播前为什么要手动将梯度清零? - Pascal的回答 - 知乎
https://www.zhihu.com/question/303070254/answer/573037166
这种模式可以让梯度玩出更多花样,比如说梯度累加(gradient accumulation)
传统的训练函数,一个batch是这么训练的:
for i,(images,target) in enumerate(train_loader):
# 1. input output
images = images.cuda(non_blocking=True)
target = torch.from_numpy(np.array(target)).float().cuda(non_blocking=True)
outputs = model(images)
loss = criterion(outputs,target)
# 2. backward
optimizer.zero_grad() # reset gradient
loss.backward()
optimizer.step()
- 获取loss:输入图像和标签,通过infer计算得到预测值,计算损失函数;
optimizer.zero_grad()
清空过往梯度;loss.backward()
反向传播,计算当前梯度;optimizer.step()
根据梯度更新网络参数
简单的说就是进来一个batch的数据,计算一次梯度,更新一次网络
使用梯度累加是这么写的:
for i,(images,target) in enumerate(train_loader):
# 1. input output
images = images.cuda(non_blocking=True)
target = torch.from_numpy(np.array(target)).float().cuda(non_blocking=True)
outputs = model(images)
loss = criterion(outputs,target)
# 2.1 loss regularization
loss = loss/accumulation_steps
# 2.2 back propagation
loss.backward()
# 3. update parameters of net
if((i+1)%accumulation_steps)==0:
# optimizer the net
optimizer.step() # update parameters of net
optimizer.zero_grad() # reset gradient
- 获取loss:输入图像和标签,通过infer计算得到预测值,计算损失函数;
loss.backward()
反向传播,计算当前梯度;- 多次循环步骤1-2,不清空梯度,使梯度累加在已有梯度上;
- 梯度累加了一定次数后,先
optimizer.step()
根据累计的梯度更新网络参数,然后optimizer.zero_grad()
清空过往梯度,为下一波梯度累加做准备;
总结来说:梯度累加就是,每次获取1个batch的数据,计算1次梯度,梯度不清空,不断累加,累加一定次数后,根据累加的梯度更新网络参数,然后清空梯度,进行下一次循环。
一定条件下,batchsize越大训练效果越好,梯度累加则实现了batchsize的变相扩大,如果 accumulation_steps
为8,则batchsize '变相' 扩大了8倍,是我们这种乞丐实验室解决显存受限的一个不错的trick,使用时需要注意,学习率也要适当放大。
更新1:关于BN是否有影响,之前有人是这么说的:
As far as I know, batch norm statistics get updated on each forward pass, so no problem if you don't do
.backward()
every time.
BN的估算是在forward阶段就已经完成的,并不冲突,只是 accumulation_steps=8
和真实的batchsize放大八倍相比,效果自然是差一些,毕竟八倍Batchsize的BN估算出来的均值和方差肯定更精准一些。
更新2:根据李韶华的分享,可以适当调低BN自己的momentum参数:
bn自己有个momentum参数:x_new_running = (1 - momentum) * x_running + momentum * x_new_observed. momentum越接近0,老的running stats记得越久,所以可以得到更长序列的统计信息
我简单看了下PyTorch 1.0的源码:https://github.com/pytorch/pytorch/blob/162ad945902e8fc9420cbd0ed432252bd7de673a/torch/nn/modules/batchnorm.py#L24,BN类里面momentum这个属性默认为0.1,可以尝试调节下。
借助梯度累加,避免同时计算多个损失时存储多个计算图
PyTorch中在反向传播前为什么要手动将梯度清零? - Forever123的回答 - 知乎
https://www.zhihu.com/question/303070254/answer/608153308
原因在于在PyTorch中,计算得到的梯度值会进行累加。
而这样的好处可以从内存消耗的角度来看。
1. Edition1
在PyTorch中,multi-task任务一个标准的train from scratch流程为:
for idx, data in enumerate(train_loader):
xs, ys = data
pred1 = model1(xs)
pred2 = model2(xs)
loss1 = loss_fn1(pred1, ys)
loss2 = loss_fn2(pred2, ys)
******
loss = loss1 + loss2
optmizer.zero_grad()
loss.backward()
++++++
optmizer.step()
从PyTorch的设计原理上来说,在每次进行前向计算得到pred时,会产生一个**用于梯度回传的计算图,这张图储存了进行back propagation需要的中间结果,当调用了 ****.backward()**
后,会从内存中将这张图进行释放。
- 上述代码执行到
******
时,内存中是包含了两张计算图的,而随着求和得到loss,这两张图进行了合并,而且大小的变化可以忽略。 - 执行到
++++++
时,得到对应的grad值并且释放内存。这样,训练时必须存储两张计算图,而如果loss的来源组成更加复杂,内存消耗会更大。
2. Edition2
为了减小每次的内存消耗,借助梯度累加,又有 ,有如下变种。
for idx, data in enumerate(train_loader):
xs, ys = data
optmizer.zero_grad()
# 计算d(l1)/d(x)
pred1 = model1(xs) #生成graph1
loss = loss_fn1(pred1, ys)
loss.backward() #释放graph1
# 计算d(l2)/d(x)
pred2 = model2(xs)#生成graph2
loss2 = loss_fn2(pred2, ys)
loss.backward() #释放graph2
# 使用d(l1)/d(x)+d(l2)/d(x)进行优化
optmizer.step()
可以从代码中看出,利用梯度累加,可以在最多保存一张计算图的情况下进行multi-task任务的训练。
3. Other
另外一个理由就是在内存大小不够的情况下叠加多个batch的grad作为一个大batch进行迭代,因为二者得到的梯度是等价的。
综上可知,这种梯度累加的思路是对内存的极大友好,是由FAIR的设计理念出发的。
相关链接
- PyTorch中在反向传播前为什么要手动将梯度清零? - 知乎:https://www.zhihu.com/question/303070254
- https://discuss.pytorch.org/t/why-do-we-need-to-set-the-gradients-manually-to-zero-in-pytorch/4903/9
【PyTorch】PyTorch中的梯度累加的更多相关文章
- PyTorch官方中文文档:torch.nn
torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom ...
- PyTorch官方中文文档:torch.optim 优化器参数
内容预览: step(closure) 进行单次优化 (参数更新). 参数: closure (callable) –...~ 参数: params (iterable) – 待优化参数的iterab ...
- [pytorch] PyTorch Hook
PyTorch Hook¶ 为什么要引入hook? -> hook可以做什么? 都有哪些hook? 如何使用hook? 1. 为什么引入hook?¶ 参考:Pytorch中autogra ...
- 从头学pytorch(二) 自动求梯度
PyTorch提供的autograd包能够根据输⼊和前向传播过程⾃动构建计算图,并执⾏反向传播. Tensor Tensor的几个重要属性或方法 .requires_grad 设为true的话,ten ...
- pytorch 查看中间变量的梯度
pytorch 为了节省显存,在反向传播的过程中只针对计算图中的叶子结点(leaf variable)保留了梯度值(gradient).但对于开发者来说,有时我们希望探测某些中间变量(intermed ...
- Pytorch入门中 —— 搭建网络模型
本节内容参照小土堆的pytorch入门视频教程,主要通过查询文档的方式讲解如何搭建卷积神经网络.学习时要学会查询文档,这样会比直接搜索良莠不齐的博客更快.更可靠.讲解的内容主要是pytorch核心包中 ...
- PyTorch官方中文文档:PyTorch中文文档
PyTorch中文文档 PyTorch是使用GPU和CPU优化的深度学习张量库. 说明 自动求导机制 CUDA语义 扩展PyTorch 多进程最佳实践 序列化语义 Package参考 torch to ...
- PyTorch官方中文文档:torch
torch 包 torch 包含了多维张量的数据结构以及基于其上的多种数学操作.另外,它也提供了多种工具,其中一些可以更有效地对张量和任意类型进行序列化. 它有CUDA 的对应实现,可以在NVIDIA ...
- [Pytorch]Pytorch中tensor常用语法
原文地址:https://zhuanlan.zhihu.com/p/31494491 上次我总结了在PyTorch中建立随机数Tensor的多种方法的区别. 这次我把常用的Tensor的数学运算总结到 ...
随机推荐
- 交叉熵和softmax
深度学习分类问题结尾就是softmax,损失函数是交叉熵,本质就是极大似然...
- Angular7和leaflet一起使用时的作用域不一致
Angular7和leaflet一起使用时的作用域不一致问题,使用(e) =>可以完美解决. 使用原始的JavaScript: map.on("click", functio ...
- jmeter-响应有中文时,显示乱码
Content-Type: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
- (转)CSS定义字体间距 字体行与行间距
源网址:http://www.cnblogs.com/jian1982/archive/2010/07/03/1770349.html CSS定义字体行间距 line-height:xxpx; CSS ...
- python 正则表达式实例:
#!/usr/bin/python import re line = "Cats are smarter than dogs" matchObj = re.match( r'(.* ...
- linux中的selinux到底是什么
一文彻底明白linux中的selinux到底是什么 2018年06月29日 14:17:30 yanjun821126 阅读数 58877 标签: SElinux 更多 个人分类: Linux 一 ...
- 【BZOJ3261】最大异或和(可持久化Trie)
题意: 思路:可持久化Trie板子题,支持序列插入和询问 #include<bits/stdc++.h> using namespace std; typedef long long ll ...
- HDU2082 找单词
问题分析 不难想到用母函数做. 令自变量\(x\)的次数就是单词价值,那么答案就是\(x\)的\(1\)次到\(50\)次的系数之和.由于我们只需要处理前\(51\)项,所以暴力多项式相乘即可. 举个 ...
- ArrayList类源码浅析(三)
1.看一个示例 运行上述代码,抛出一个异常: 这是一个典型的并发修改异常,如果把上述代码中的125行注释,把126行打开,运行就能通过了: 原因: 1)因为在迭代的时候,使用的是Itr类的对象,在调用 ...
- Java中for each与正常for循环效率对比
循环ArrayList时,普通for循环比foreach循环花费的时间要少一点:循环LinkList时,普通for循环比foreach循环花费的时间要多很多. 当我将循环次数提升到一百万次的时候,循环 ...