[BZOJ3714] Kuglarz
问题描述
魔术师的桌子上有n个杯子排成一行,编号为1,2,…,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获得奖品。花费c_ij元,魔术师就会告诉你杯子i,i+1,…,j底下藏有球的总数的奇偶性。
采取最优的询问策略,你至少需要花费多少元,才能保证猜出哪些杯子底下藏着球?
输入格式
第一行一个整数n(1<=n<=2000)。
第i+1行(1<=i<=n)有n+1-i个整数,表示每一种询问所需的花费。其中c_ij(对区间[i,j]进行询问的费用,1<=i<=j<=n,1<=c_ij<=10^9)为第i+1行第j+1-i个数。
输出格式
输出一个整数,表示最少花费。
样例输入
5
1 2 3 4 5
4 3 2 1
3 4 5
2 1
5
样例输出
5
解析
区间问题常和前缀和有关。我们知道了区间\([i,j]\)里数的和的奇偶,也就知道了前缀和中\(sum[j]-sum[i-1]\)的奇偶。
我们的目标是知道每一个数,而每一个数只有可能是0和1,所以如果我们知道前缀和数组的奇偶,也是可以推出每一个数是多少的。而如果我们知道了\(sum[j]\)或\(sum[i-1]\)其中一个的奇偶,再询问区间\([i,j]\)的情况,也就知道另一个的奇偶了。而\(sum[0]=0\)是我们的已知条件。
由此我们可以把前缀和数组的每一位当做一个点,对于区间\([i,j]\)我们将\(i-1\)号点和\(j\)号点连权值为花费的无向边,代表如果我们知道一个可以花费这么多知道另外一个。最后我们的目标是从0出发能达到其他所有点,那么求最小生成树即可。
代码
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#define int long long
#define N 2002
using namespace std;
struct edge{
int u,v,w;
}e[N*N];
int n,m,i,j,fa[N];
int read()
{
char c=getchar();
int w=0;
while(c<'0'||c>'9') c=getchar();
while(c<='9'&&c>='0'){
w=w*10+c-'0';
c=getchar();
}
return w;
}
int my_comp(const edge &x,const edge &y)
{
return x.w<y.w;
}
int find(int x)
{
if(fa[x]!=x) fa[x]=find(fa[x]);
return fa[x];
}
int Kruskal()
{
sort(e+1,e+m+1,my_comp);
for(int i=1;i<=n;i++) fa[i]=i;
int cnt=n+1,ans=0;
for(int i=1;i<=m;i++){
if(cnt==1) break;
int f1=find(e[i].u),f2=find(e[i].v);
if(f1!=f2){
fa[f1]=f2;
cnt--;
ans+=e[i].w;
}
}
return ans;
}
signed main()
{
n=read();
for(i=1;i<=n;i++){
for(j=i;j<=n;j++){
int x=read();
e[++m]=(edge){i-1,j,x};
}
}
printf("%lld\n",Kruskal());
return 0;
}
[BZOJ3714] Kuglarz的更多相关文章
- [BZOJ3714]Kuglarz(最小生成树)
Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,-,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获得奖品.花费\(C_{i,j}\)元,魔术师就会告诉 ...
- 【BZOJ3714】Kuglarz(最小生成树)
[BZOJ3714]Kuglarz(最小生成树) 题面 BZOJ Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,-,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯 ...
- 【BZOJ3714】[PA2014]Kuglarz 最小生成树
[BZOJ3714][PA2014]Kuglarz Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,…,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获 ...
- bzoj3714: [PA2014]Kuglarz
[PA2014]KuglarzTime Limit: 20 Sec Memory Limit: 128 MBSubmit: 553 Solved: 317[Submit][Status][Discus ...
- BZOJ3714 [PA2014]Kuglarz 【最小生成树】
题目链接 BZOJ3714 题解 我们如果知道了所有的数,同样就知道了所有的前缀和 相反,我们如果求出了所有前缀和,就知道了所有的数,二者是等价的 对于一个区间\([l,r]\)如果我们知道了前缀和\ ...
- 【kruscal】【最小生成树】【并查集扩展】bzoj3714 [PA2014]Kuglarz
ORZ:http://www.cnblogs.com/zrts/p/bzoj3714.html #include<cstdio> #include<algorithm> usi ...
- [BZOJ3714][PA2014]Kuglarz(MST)
题目: Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,…,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获得奖品.花费c_ij元,魔术师就会告诉你杯子 ...
- BZOJ3714 PA2014 Kuglarz 最小生成树
题目传送门 题意:有$N$个盒子,每个盒子中有$0$或$1$个球.现在你可以花费$c_{i,j}$的代价获得$i$到$j$的盒子中球的总数的奇偶性,求最少需要多少代价才能知道哪些盒子中有球.$N \l ...
- [bzoj3714] [PA2014] Kuglarz(最小生成树)
我们考虑这个题...思路比较神仙. 就是我们设\(sum[i]\)为前i个的区间里的情况,然后我们知道\(sum[j]\)的话,我们就可以知道\(j-i\)的情况了 所以说这很像最小生成树里面的约束条 ...
随机推荐
- kafka多线程消费
建立kafka消费类ConsumerRunnable ,实现Runnable接口: import com.alibaba.fastjson.JSON; import com.alibaba.fastj ...
- keepalive + nginx 搭建高可用集群动态网站
环境准备: 两台节点部署keepalived,并且设为互为主从,实现高可用. 两台从节点部署nginx以及相关组件,作为真实服务器实现动态网站上线. 一.MASTER(BACKUP)节点下载keepa ...
- Spring Boot-配置
Spring 官方完整文档:https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle Spring 官方配置文档:htt ...
- JDK8新特性之一Lambda
JDK8的新特性之一Lambda能将函数作为方法里面的参数使用. /** * JDK8新特性Lambda */ public class Test { public static void main( ...
- Django-DRF组件学习-环境安装与配置与序列化器学习
1.DRF环境安装与配置 DRF需要以下依赖: Python (2.7, 3.2, 3.3, 3.4, 3.5, 3.6) Django (1.10, 1.11, 2.0) DRF是以Django扩展 ...
- 浅谈JVM及原理
前言 JVM一直是java知识里面进阶阶段的重要部分,如果希望在java领域研究的更深入,则JVM则是如论如何也避开不了的话题,本系列试图通过简洁易读的方式,讲解JVM必要的知识点. 运行流程 我们都 ...
- linux rz上传-sz下载
yum install lrzsz -y rz 上传文件 不能传目录 如果要传目录需要打包成文件再上传 需要往哪里传东西,先进入哪个目录 rz -y 上传覆盖 sz -y 文件名 ...
- [集合]Map的 entrySet() 详解以及用法(四种遍历map的方式)
Entry 由于Map中存放的元素均为键值对,故每一个键值对必然存在一个映射关系. Map中采用Entry内部类来表示一个映射项,映射项包含Key和Value (我们总说键值对键值对, 每一个键值对也 ...
- SCUT - 486 - 无向图上的点 - Dijkstra
好像原题是这个?https://www.cnblogs.com/kanchuang/p/11120052.html 这个有解释:https://blog.csdn.net/wddwjlss/artic ...
- 字符串hash 模板
typedef long long ll; typedef unsigned long long ull; #define maxn 1005 struct My_Hash { ull ; ull p ...