[APIO 2010] [LOJ 3144] 奇怪装置 (数学)

题面

分析

考虑t1,t2时刻坐标相同的条件

\[\begin{cases} t_1+\lfloor \frac{t_1}{B} \rfloor \equiv t_2+\lfloor \frac{t_2}{B} \rfloor (\mathrm{mod}\ A) \\ t_1 \equiv t_2 (\mathrm{mod}\ B)\\ \end{cases}
\]

由第二个式子,可以令\(t_1=t_2+Bk(k \in N)\)

代入式子1,\(t_2+Bk+\lfloor \frac{t_2}{B}+k \rfloor \equiv t_2+\lfloor \frac{t_2}{B} \rfloor(\mathrm{mod} \ A)\)

消元得\((B+1)k \equiv 0 (\mathrm{mod} \ A)\)

因此\(k|\frac{A}{gcd(A,B+1)}\),

代入上式,\(t_1=t_2+B\frac{A}{gcd(A,B+1)}(k \in N)\)

\(t_1 \equiv t _2 \ (\mathrm{mod} \frac{AB}{gcd(A,B+1)})\)

因此,可以把l,r取模\(\frac{AB}{gcd(A,B+1)}\),然后问题就变成在\([0,\frac{AB}{gcd(A,B+1)}]\)上有若干条线段,求线段的并

直接排序再\(O(n)\)扫一遍即可

注意\(\frac{AB}{gcd(A,B+1)}\)可能会超过long long范围,但注意到l,r都\(\leq 2 \times 10^{18}\),如果\(\frac{AB}{gcd(A,B+1)}\)超过就强行设成$ 2 \times 10^{18}$

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxn 1000000
#define maxr 2e18
using namespace std;
typedef long long ll;
ll n,A,B;
inline ll gcd(ll a,ll b){
return b==0?a:gcd(b,a%b);
} struct seg{
ll l;
ll r;
seg(){ }
seg(ll _l,ll _r){
l=_l;
r=_r;
}
friend bool operator < (seg p,seg q){
if(p.l==q.l) return p.r<q.r;
else return p.l<q.l;
}
}a[maxn+5],b[maxn*2+5];
int cnt=0;
int main(){
scanf("%I64d %I64d %I64d",&n,&A,&B);
for(int i=1;i<=n;i++){
scanf("%I64d %I64d",&a[i].l,&a[i].r);
}
ll C=A/gcd(A,B+1);
if(maxr/B<=C) C=maxr; //B*C<=2e18
else C=C*B;
for(int i=1;i<=n;i++){
if(a[i].r-a[i].l>=C){
printf("%I64d\n",C);
return 0;
}
if(a[i].l%C<=a[i].r%C){
b[++cnt]=seg(a[i].l%C,a[i].r%C);
}else{
b[++cnt]=seg(0,a[i].r%C);
b[++cnt]=seg(a[i].l%C,C-1);
}
}
sort(b+1,b+1+cnt);
// cnt=unique(b+1,b+1+cnt)-b-1;
ll l=b[1].l,r=b[1].r;
ll ans=0;
for(int i=2;i<=cnt;i++){
if(b[i].l>r+1){
ans+=(r-l+1);
l=b[i].l;
r=b[i].r;
}else if(b[i].r>r){
r=b[i].r;
}
}
ans+=r-l+1;
printf("%I64d\n",ans);
}

[APIO 2010] [LOJ 3144] 奇怪装置 (数学)的更多相关文章

  1. 【LOJ#3144】[APIO2019]奇怪装置(数论)

    [LOJ#3144][APIO2019]奇怪装置(数论) 题面 LOJ 题解 突然发现\(LOJ\)上有\(APIO\)的题啦,赶快来做一做. 这题是窝考场上切了的题嗷.写完暴力之后再推了推就推出正解 ...

  2. #3144. 「APIO 2019」奇怪装置

    #3144. 「APIO 2019」奇怪装置 题目描述 考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数 \(x\) 和 \(y\). 经过研究,科学家对该装置得出了一个 ...

  3. 【LG5444】[APIO2019]奇怪装置

    [LG5444][APIO2019]奇怪装置 题面 洛谷 题目大意: 给定\(A,B\),对于\(\forall t\in \mathbb N\),有二元组\((x,y)=((t+\lfloor\fr ...

  4. 【LOJ #3144】「APIO 2019」奇怪装置

    题意: 定义将一个\(t\)如下转换成一个二元组: \[ f(t) = \begin{cases} x = (t + \left\lfloor \frac{t}{B} \right \rfloor) ...

  5. 「APIO 2019」奇怪装置

    题目 考虑推柿子 最开始的想法是如果两个\(t\)在\(mod\ B\)意义下相等,那么只需要比较一下\((t+\left \lfloor \frac{t}{B}\rfloor \right)mod\ ...

  6. [APIO2019T1]奇怪装置

    考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数x和y.经过研究,科学家对该装置得出了一个结论:该装置是一个特殊的时钟,它从过去的某个时间点开始测量经过的时刻数t,但该装 ...

  7. 题解-APIO2019奇怪装置

    problem loj-3144 题意概要:设函数 \(f(t)\) 的返回值为一个二元组,即 \(f(t)=((t+\lfloor \frac tB\rfloor)\bmod A, t\bmod B ...

  8. 【BZOJ 1911】【APIO 2010】特别行动队

    http://www.lydsy.com/JudgeOnline/problem.php?id=1911 夏令营里斜率优化的例题,我调了一晚上,真是弱啊. 先推公式吧($sum_i$表示$x_1 \d ...

  9. [bzoj 1911][Apio 2010]特别行动队(斜率优化DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1911 分析: 首先可以的到裸的方程f[i]=max{f[j]+a*(Si-Sj)^2+b*(S ...

随机推荐

  1. MASM DEBUG LINKER免费下载

    这资源全被CSDN霸占了,对于我这种不使用CSND的人,没积分,真TM不好找,搞个共享的. 网盘链接,永久有效 https://pan.baidu.com/s/1Ws5axrfos1cpWL9jyAE ...

  2. Django【第4篇】:Django之模板继承

    jango框架之模板继承和静态文件配置 一.模板继承 目的是:减少代码的冗余 语法: {% block classinfo %} {% endblock %} 具体步骤: 1.创建一个base.htm ...

  3. C语言realpath

    表头文件:     #include <limits.h>     #include <stdlib.h> 函数原型:     char *realpath(const cha ...

  4. 【leetcode】848. Shifting Letters

    题目如下: 解题思路:本题首先要很快速的计算出任意一个字符shift后会变成哪个字符,其实也很简单,让shift = shift % 26,接下来再做计算.第二部是求出每个字符要shift的次数.可以 ...

  5. js 获取滚动位置,滚动到指定位置,平滑滚动

    1.获取当前滚动条位置信息 var top = dom.scrollTop; // 获取y轴上的滚动位置 var left = dom.scrollLeft; // 获取x轴上的滚动位置 2.滚动到指 ...

  6. CMD命令行二

    图形化用户界面 calc control mmc notepad regedit (start命令也有用) dir | findstr /i "for" 忽略大小写查找 finds ...

  7. Java——开发环境配置

    [1]JDK的安装与卸载 (1)卸载程序         控制面板--添加或删除程序--J2SE Development Kit和J2SE Runtime Envioroment--删除 (2)安装程 ...

  8. luogu P1028 数的计算 x

    P1028 数的计算 题目描述 我们要求找出具有下列性质数的个数(包含输入的自然数n): 先输入一个自然数n(n<=1000),然后对此自然数按照如下方法进行处理: 1.不作任何处理; 2.在它 ...

  9. 给网页头部标题加logo

    现在在写公司的官网,需要在网页的头部加logo,没有加的时候是这样的 那么,现在只要一步,就可以了,加上一行代码 <link rel="icon" href="图标 ...

  10. Android 快速索引(城市列表和联系人)

    最近需要实现一个城市列表的快速索引功能.类似于联系人应用,根据姓名首字母快速索引功能. 要实现这个功能只需要解决两个问题:1.对列表进行分组(具有同一特征),并且能够快速定位到该组的第一项 2.右侧分 ...