https://scut.online/p/274

首先要判断是一颗树,并且找出树的直径。

是一棵树,首先边恰好有n-1条,其次要连通,这两个条件已经充分了,当然判环可以加速。

两次dfs找出直径,一边叫做L,另一边叫做R。(第一次写这个)

然后树形dp。

规定其中一个叶子作为树根。然后fx表示从x向下(叶子)走能走到的最远距离,这个非常简单。

然后漏了什么情况呢?从x向上走的情况。

这个时候要从根开始维护一个叫做gx的数组,那么每次孩子v的gx就是父亲u的gx(继续向上走)和u的fx(从父亲开始往下走)的最大值。注意这个时候往下走的不能走回去v,所以要记录两个fx,并且记录大的那个是走哪个方向的。

边界:在叶子/树根等不能走的位置,根据定义,距离为0,点序号为本身。

#include<bits/stdc++.h>
using namespace std; const int MAXN = 1e5 + 5;
const int INF = 0x3f3f3f3f; struct Edge {
int v, w;
}; vector<Edge> e[MAXN]; void init0(int n) {
for(int i = 0; i <= n; ++i)
e[i].clear();
} int cnt, vis[MAXN], dis[MAXN], maxdis, L, R; void init1(int n) {
memset(vis, false, sizeof(vis[0]) * (n + 1));
memset(dis, 0, sizeof(dis[0]) * (n + 1));
cnt = 0, maxdis = 0;
} bool dfs1(int id, int fa) {
vis[id] = true, ++cnt;
for(auto p : e[id]) {
int v = p.v, w = p.w;
if(v == fa)
continue;
if(vis[v])
return false;
dis[v] = dis[id] + w;
if(dis[v] > maxdis)
maxdis = dis[v], L = v;
if(dfs1(v, id) == false)
return false;
}
return true;
} void init2(int n) {
memset(dis, 0, sizeof(dis[0]) * (n + 1));
maxdis = 0;
} void dfs2(int id, int fa) {
for(auto p : e[id]) {
int v = p.v, w = p.w;
if(v == fa)
continue;
dis[v] = dis[id] + w;
if(dis[v] > maxdis)
maxdis = dis[v], R = v;
dfs2(v, id);
}
} struct F {
int v, w, s;
F(int v = 0, int w = 0, int s = 0): v(v), w(w), s(s) {}
} f[MAXN], f2[MAXN], tmp; void maintainF(int id) {
if(tmp.w > f2[id].w || tmp.w == f2[id].w && tmp.v < f2[id].v) {
f2[id] = tmp;
if(f2[id].w > f[id].w || f2[id].w == f[id].w && f2[id].v < f[id].v)
swap(f[id], f2[id]);
}
} void dfs3(int id, int fa) {
f[id] = f2[id] = F(id, 0, -1);
for(auto p : e[id]) {
int v = p.v, w = p.w;
if(v == fa)
continue;
dfs3(v, id);
tmp.w = f[v].w + w, tmp.v = f[v].v, tmp.s = v;
maintainF(id);
}
} struct G {
int v, w;
} g[MAXN]; F getF(int id, int fa) {
if(f[fa].s == id)
return f2[fa];
return f[fa];
} void maintainG(int id, int fa, int faw) {
if(fa == 0) {
g[id].w = 0;
g[id].v = id;
return;
}
tmp = getF(id, fa);
if(g[fa].w > tmp.w) {
g[id].w = g[fa].w + faw;
g[id].v = g[fa].v;
} else if(g[fa].w == tmp.w) {
g[id].w = g[fa].w + faw;
g[id].v = min(tmp.v, g[fa].v);
} else {
g[id].w = tmp.w + faw;
g[id].v = tmp.v;
}
} void dfs4(int id, int fa, int faw) {
maintainG(id, fa, faw);
for(auto p : e[id]) {
int v = p.v, w = p.w;
if(v == fa)
continue;
dfs4(v, id, w);
}
} int getFG(int id) {
if(f[id].w > g[id].w)
return f[id].v;
else if(f[id].w == g[id].w)
return min(f[id].v, g[id].v);
return g[id].v;
} int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
int n, m, k;
while(~scanf("%d%d%d", &n, &m, &k)) {
if(m != n - 1) {
for(int i = 1, u, v, w; i <= m; ++i)
scanf("%d%d%d", &u, &v, &w);
puts("There is no B-Tree");
continue;
}
init0(n);
for(int i = 1, u, v, w; i <= m; ++i) {
scanf("%d%d%d", &u, &v, &w);
e[u].push_back({v, w});
e[v].push_back({u, w});
}
init1(n);
if(dfs1(1, 0) == false || cnt != n) {
puts("There is no B-Tree");
continue;
}
init2(n);
dfs2(L, 0);
if(dis[R] > k) {
puts("There is no B-Tree");
continue;
}
dfs3(R, 0);
dfs4(R, 0, 0);
for(int i = 1; i <= n; ++i)
printf("%d\n", getFG(i));
}
}

SCUT - 274 - CC B-Tree - 树形dp的更多相关文章

  1. 熟练剖分(tree) 树形DP

    熟练剖分(tree) 树形DP 题目描述 题目传送门 分析 我们设\(f[i][j]\)为以\(i\)为根节点的子树中最坏时间复杂度小于等于\(j\)的概率 设\(g[i][j]\)为当前扫到的以\( ...

  2. hdu-5834 Magic boy Bi Luo with his excited tree(树形dp)

    题目链接: Magic boy Bi Luo with his excited tree Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: ...

  3. CF 461B Appleman and Tree 树形DP

    Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other ...

  4. codeforces 161D Distance in Tree 树形dp

    题目链接: http://codeforces.com/contest/161/problem/D D. Distance in Tree time limit per test 3 secondsm ...

  5. hdu6035 Colorful Tree 树形dp 给定一棵树,每个节点有一个颜色值。定义每条路径的值为经过的节点的不同颜色数。求所有路径的值和。

    /** 题目:hdu6035 Colorful Tree 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6035 题意:给定一棵树,每个节点有一个颜色值.定 ...

  6. 5.10 省选模拟赛 tree 树形dp 逆元

    LINK:tree 整场比赛看起来最不可做 确是最简单的题目. 感觉很难写 不过单独考虑某个点 容易想到树形dp的状态. 设f[x]表示以x为根的子树内有黑边的方案数. 白边方案只有一种所以不用记录. ...

  7. Codeforces Round #263 Div.1 B Appleman and Tree --树形DP【转】

    题意:给了一棵树以及每个节点的颜色,1代表黑,0代表白,求将这棵树拆成k棵树,使得每棵树恰好有一个黑色节点的方法数 解法:树形DP问题.定义: dp[u][0]表示以u为根的子树对父亲的贡献为0 dp ...

  8. codeforces Round #263(div2) D. Appleman and Tree 树形dp

    题意: 给出一棵树,每个节点都被标记了黑或白色,要求把这棵树的其中k条变切换,划分成k+1棵子树,每颗子树必须有1个黑色节点,求有多少种划分方法. 题解: 树形dp dp[x][0]表示是以x为根的树 ...

  9. POJ 2486 Apple Tree(树形DP)

    题目链接 树形DP很弱啊,开始看题,觉得貌似挺简单的,然后发现貌似还可以往回走...然后就不知道怎么做了... 看看了题解http://www.cnblogs.com/wuyiqi/archive/2 ...

随机推荐

  1. LTM_本地流量管理(二)

    会话保持 首先要熟悉两个概念:连接connect和会话session 连接:在四层负载均衡中,连接是最小元素. l  源端口:客户端随机产生的端口. l  源地址:发起请求的源IP地址. l  目的端 ...

  2. idea 打包model 为jar包

    1,在项目上鼠标右键 --> Open Module Settings 2, Artifacts --> + --> JAR --> From modules with dep ...

  3. 超大文件上传方案(ASP.NET)

    ASP.NET上传文件用FileUpLoad就可以,但是对文件夹的操作却不能用FileUpLoad来实现. 下面这个示例便是使用ASP.NET来实现上传文件夹并对文件夹进行压缩以及解压. ASP.NE ...

  4. RedisTemplate访问Redis数据结构(二)——List

    RedisTemplate使用ListOperations专门操作list列表.首先初始化spring工厂获得redisTemplate和opsForList private RedisTemplat ...

  5. H. The Game of Life

    题目链接:http://exam.upc.edu.cn/problem.php?id=5206 题意:邻居为八个方向.若一个活人有2或3个邻居,遗传一代,否则死亡:若一个死人有3个邻居,则下一代复活. ...

  6. which statement is true for the class java.util.ArrayList?

    A.集合中的元素是有序的   对 B.集合被保证为不可变的  错 C.集合中的元素被保证为唯一的  错  有序的 所以不唯一 D.集合中的元素使用一个唯一的键来存取   错   没有键 E.集合中的元 ...

  7. UVALive 6858 Frame (模拟)

    Frame 题目链接: http://acm.hust.edu.cn/vjudge/contest/130303#problem/D Description http://7xjob4.com1.z0 ...

  8. [洛谷P3940]:分组(贪心+并查集)

    题目传送门 题目描述 小$C$在了解了她所需要的信息之后,让兔子们调整到了恰当的位置.小$C$准备给兔子们分成若干个小组来喂恰当的胡萝卜给兔子们吃.此时,$n$只兔子按一定顺序排成一排,第$i$只兔子 ...

  9. jquery attr()方法获取input的checked属性问题

    问题:经常使用jQuery插件的attr方法获取checked属性值,获取的值的大小为未定义,此时可以用prop方法获取其真实值,下面介绍这两种方法的区别: 1.通过prop方法获取checked属性 ...

  10. React-Native 之 GD (五)属性声明和属性确认 及 占位图

    1.在 React-Native 创建的自定义组件是可以复用的,而开发过程中一个组件可能会由多个人同时开发或者多个人使用一个组件,为了让开发人员之间减少沟通成本,我们会对某些必要的属性进行属性声明,让 ...