题目名称:货币系统

来源:2018年NOIP提高组

链接

博客链接

题目链接

题目内容

题目描述

在网友的国度中共有\(n\)种不同面额的货币,第\(i\)种货币的面额为\(a[i]\),你可以假设每一种货币都有无穷多张。为了方便,我们把货币种数为\(n\)、面额数组为\(a[1..n]\) 的货币系统记作\((n,a)\)。

在一个完善的货币系统中,每一个非负整数的金额\(x\)都应该可以被表示出,即对每一个非负整数\(x\),都存在\(n\)个非负整数\(t[i]\)满足\(a[i] \times t[i]\)的和为\(x\)。然而, 在网友的国度中,货币系统可能是不完善的,即可能存在金额\(x\)不能被该货币系统表示出。例如在货币系统\(n=3\),\(a=[2,5,9]\)中,金额\(1,3\)就无法被表示出来。

两个货币系统\((n,a)\) 和\((m,b)\) 是等价的,当且仅当对于任意非负整数\(x\),它要么均可以被两个货币系统表出,要么不能被其中任何一个表出。

现在网友们打算简化一下货币系统。他们希望找到一个货币系统\((m,b)\) ,满足\((m,b)\) 与原来的货币系统\((n,a)\) 等价,且\(m\)尽可能的小。他们希望你来协助完成这个艰巨的任务:找到最小的\(m\)。

题目大意

已知货币系统\((n,a)\),\(n\)表示有多少种面额,\(a\)是一个集合,各个元素表示各种面额的大小。

两个货币系统\((n,a)\) 和\((m,b)\)是等价的,当且仅当对于任意非负整数\(x\),它要么均可以被两个货币系统表出,要么不能被其中任何一个表出。

找到一个货币系统\((m,b)\) ,满足\((m,b)\) 与原来的货币系统\((n,a)\) 等价,且\(m\)尽可能的小。其中 \(b\in a\)。

格式

输入

输入文件的第一行包含一个整数\(T\),表示数据的组数。

接下来按照如下格式分别给出\(T\)组数据。 每组数据的第一行包含一个正整数\(n\)。接下来一行包含\(n\)个由空格隔开的正整数\(a[i]\)。

输出

输出文件共有\(T\)行,对于每组数据,输出一行一个正整数,表示所有与 \((n,a)\) 等价的货币系统 \((m,b)\) 中,最小的 \(m\)。

数据

样例

输入

2
4
3 19 10 6
5
11 29 13 19 17

输出

2
5

解释

在第一组数据中,货币系统\((2,[3,10])\) 和给出的货币系统\((n,a)\) 等价,并可以验证不存在\(m<2\) 的等价的货币系统,因此答案为\(2\)。 在第二组数据中,可以验证不存在$m<n $的等价的货币系统,因此答案为\(5\)。

数据范围

测试点 n a[i] 测试点 n a[i]
1 =2 ≤10000 11 ≤13 ≤16
2 12
3 13
4 =3 14 ≤25 ≤40
5 15
6 16
7 =4 17 ≤100 ≤25000
8 18
9 =5 19
10 20

对于\(100\%\)的数据,满足\(1≤T≤20,n,a[i]≥1\)。

提示

因为钱掉进了水里,所以这是一道水题。

题解

输入每种面额后,先将其从小到大排序。

引理

如果一个面额无法被比它小的面额凑出来,那么必须选,否则一定不选。

证明:前者很显然,因为这个数不可能被比其更大的数凑出来。

后者,因为这个数可以被其他数凑出来,那么需要这个数组成的数只需要凑成这个数的数就可以了。

于是我们按顺序做完全背包,如果发现没被前面的数背包得到就选,否则不选。

graph TD
A(开始处理)-->B[是否被背包得到]
B-->|是|C[弃置]
B-->|否|D[选择该元素]
D-->E[在原来的基础上用该元素进行完全背包]
C-->F(进入下一次处理)
E-->F
//C++
#include<bits/locale_facets.h>
#include<memory.h>
#include<stdio.h>
using namespace std;
inline void output(long long value);
inline long long input();
short a[101],able[25001];
int main()
{
short T=input();
while(T--)
{
short n=input(),maximum=0;
short must=n;
for(short i=1;i<=n;i++)maximum=max(maximum,a[i]=input());
able[0]=true;
for(short i=1;i<=n;i++)
for(short j=a[i];j<=maximum;j++)
if(able[j-a[i]])able[j]++;
for(short i=1;i<=n;i++)
if(able[a[i]]>1)must--;
memset(able,0,50002);
output(must),putchar('\n');
}
return 0;
}
inline void output(long long o)
{
if(o<0)putchar('-'),o=-o;
if(o>=10)output(o/10);
putchar(o%10^'0');
}
inline long long input()
{
bool positive=true;
char now=getchar();
long long i=0;
for(;!isdigit(now);now=getchar())
if(now=='-')positive=!positive;
for(;isdigit(now);now=getchar())i=(i<<3)+(i<<1)+(now^'0');
return positive?i:-i;
}

[NOIP提高组2018]货币系统的更多相关文章

  1. NOIP提高组2018试题解析 目录

    重磅来袭! 本蒟蒻准备挑战一下NOIP2018提高组的试题啦(怎么办 我猜我连10分都拿不了) 目录: Day1 1.铺设道路   讲解  得分:100 2.货币系统   讲解 3.赛道修建   讲解 ...

  2. NOIP提高组2018试题解析 Day1 T1 铺设道路 P5019

    题目描述 春春是一名道路工程师,负责铺设一条长度为 nn 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 nn 块首尾相连的区域,一开始,第 ii 块区域下陷的深度为 d_idi​  ...

  3. NOIP提高组2018 D1T3 【赛道修建】

    颓了好几天,终于把这到题处理了一下. 话说,其实我考场上想出正解了,但是手残,算复杂度的时候多按了一个零,导致算出来是1亿多的复杂度,都不敢打...就把部分分都捡了一下... 题目描述: C 城将要举 ...

  4. 2018.12.30【NOIP提高组】模拟赛C组总结

    2018.12.30[NOIP提高组]模拟赛C组总结 今天成功回归开始做比赛 感觉十分良(zhōng)好(chà). 统计数字(count.pas/c/cpp) 字符串的展开(expand.pas/c ...

  5. 2018.12.08【NOIP提高组】模拟B组总结(未完成)

    2018.12.08[NOIP提高组]模拟B组总结 diyiti 保留道路 进化序列 B diyiti Description 给定n 根直的木棍,要从中选出6 根木棍,满足:能用这6 根木棍拼出一个 ...

  6. NOIP提高组初赛难题总结

    NOIP提高组初赛难题总结 注:笔者开始写本文章时noip初赛新题型还未公布,故会含有一些比较老的内容,敬请谅解. 约定: 若无特殊说明,本文中未知数均为整数 [表达式] 表示:在表达式成立时它的值为 ...

  7. NOIP提高组2004 合并果子题解

    NOIP提高组2004 合并果子题解 描述:在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消 ...

  8. 计蒜客 NOIP 提高组模拟竞赛第一试 补记

    计蒜客 NOIP 提高组模拟竞赛第一试 补记 A. 广场车神 题目大意: 一个\(n\times m(n,m\le2000)\)的网格,初始时位于左下角的\((1,1)\)处,终点在右上角的\((n, ...

  9. 1043 方格取数 2000 noip 提高组

    1043 方格取数  2000 noip 提高组 题目描述 Description 设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0.如下图所示(见样 ...

随机推荐

  1. 使用MockMVC与Junit进行单体测试

    1.pom.xml追加 junit spring-test 2.测试共通类 @ContextConfiguration(locations = { "classpath:springfram ...

  2. 好用的zookeeper客服端----Curator初探

    maven配置: <dependency> <groupId>org.apache.curator</groupId> <artifactId>cura ...

  3. AT2306 Rearranging

    有一个显然的,就是不互质的数的相对位置是不会改变的,那么我们把它们放到一个连通块里面去,然后我交换就是交换两个里面最小的对吧.直接连起来然后跑\(TopSort\)就行了. #include<s ...

  4. 【原】Python基础-序列

    1 序列 在Python中,最基本的数据结构是序列,序列中每个元素被分配一个编号,也称为索引.第一个索引为0,第二个则是1,以此类推.序列中最后一个元素被标为-1,倒数第二个元素被标为-2,以此类推. ...

  5. Cesium入门-1-展示一个地球

    Cesium 官网教程地址 https://cesium.com/docs/tutorials/getting-started//tutorials/getting-started/ 第一个程序代码: ...

  6. LiquiBase实战总结

    LiquiBase概述 Liquibase是一个用于跟踪.管理和应用数据库变化的开源的数据库重构工具.它将所有数据库的变化(包括结构和数据)都保存在XML文件中,便于版本控制. Liquibase具备 ...

  7. Android Studio创建Module-库模块

    Android Studio创建Module-库模块   本文链接:https://blog.csdn.net/niuba123456/article/details/81049676 模块是源文件和 ...

  8. rank SQL 筛选重复数据

    先思考一个问题: 看下面的表数据 问题:现在需要在 A 和 B 相同的前提下对 C desc排序,然后拿到排序中不是第一个的数据?也就是说拿到下面的数据 只用一条 SQL 实现: select * f ...

  9. 迭代器iterator-生成器generator

    1. 迭代 根据记录的前面的元素的位置信息 去访问后续的元素的过程 -遍历 迭代 2. 可迭代对象 iterable 如何判断可迭代对象的3种方式 能够被迭代访问的对象 for in 常用可迭代对象- ...

  10. SpringMvc+ajax跨域请求时,出现options类型的请求并返回403的解决方案

    在使用 $.ajax({ url:'http://127.0.0.1:8081/rest/ccxxx/xxxx', type:'POST', dataType:"json", co ...