环形涂色裸题

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<cstring>
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<bitset>
#include<utility>
#include<functional>
#include<iomanip>
#include<sstream>
#include<ctime>
#include<cassert>
#define A first
#define B second
#define mp make_pair
#define pb push_back
#define pw(x) (1ll << (x))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define rep(i,l,r) for(int i=(l);i<(r);i++)
#define per(i,r,l) for(int i=(r);i>=(l);i--)
#define FOR(i,l,r) for(int i=(l);i<=(r);i++)
#define eps 1e-9
#define PIE acos(-1)
#define cl(a,b) memset(a,b,sizeof(a))
#define fastio ios::sync_with_stdio(false);cin.tie(0);
#define lson l , mid , ls
#define rson mid + 1 , r , rs
#define ls (rt<<1)
#define rs (ls|1)
#define INF 0x3f3f3f3f
#define lowbit(x) (x&(-x))
#define sqr(a) a*a
#define ll long long
#define ull unsigned long long
#define vi vector<int>
#define pii pair<int, int>
#define dd(x) cout << #x << " = " << (x) << ", "
#define de(x) cout << #x << " = " << (x) << "\n"
#define endl "\n"
using namespace std;
const int mod=1e9+;
int n,m,k,c;
const int maxn=+;
int vis[maxn],lab[maxn];
//**********************************
ll qpow(ll a,ll b)
{
ll ans=;
while(b){
if(b&)ans=ans*a%mod;
a=a*a%mod;
b>>=;
}
return ans;
}
ll getloop()
{
cl(vis,);
int cnt=;
FOR(i,,n){
if(vis[i])continue;
cnt++;
int j=i;
do{
vis[j]=;
j=lab[j];
}while(!vis[j]);
}
return cnt;
}
void work()
{
if(!n){
puts("0\n");return ;
}
ll ans=;
rep(i,,n){
FOR(j,,n)lab[j]=(j+i)%n+;
ans+=qpow(k,getloop());
// FOR(j,1,n/2)swap(lab[j],lab[n+1-j]);ans+=qpow(k,getloop());
ans%=mod;
// de(ans);
}
ans=ans*qpow(n,mod-)%mod;
// ans/=n;
// ans=ans*c%mod;
cout<<ans<<endl;
}
//********************************** //**********************************
int main()
{
// while(~scanf("%d",&n))work();
cin>>m>>n>>c;
k=qpow(c,m*m);
// de(k);
work();
return ;
}

polya定理,环形涂色的更多相关文章

  1. Polya定理

    http://www.cnblogs.com/wenruo/p/5304698.html 先看 Polya定理,Burnside引理回忆一下基础知识.总结的很棒. 一个置换就是集合到自身的一个双射,置 ...

  2. Burnside引理和Polya定理之间的联系

    最近,研究了两天的Burnside引理和Polya定理之间的联系,百思不得其解,然后直到遇到下面的问题: 对颜色限制的染色 例:对正五边形的三个顶点着红色,对其余的两个顶点着蓝色,问有多少种非等价的着 ...

  3. [洛谷P4980]【模板】Polya定理

    题目大意:给一个$n$个点的环染色,有$n$中颜色,问有多少种涂色方案是的旋转后本质不同 题解:$burnside$引理:$ans=\dfrac1{|G|}\sum\limits_{g\in G}A_ ...

  4. 【数论】【Polya定理】poj1286 Necklace of Beads

    Polya定理:设G={π1,π2,π3........πn}是X={a1,a2,a3.......an}上一个置换群,用m中颜色对X中的元素进行涂色,那么不同的涂色方案数为:1/|G|*(mC(π1 ...

  5. Necklace of Beads(polya定理)

    http://poj.org/problem?id=1286 题意:求用3种颜色给n个珠子涂色的方案数.polya定理模板题. #include <stdio.h> #include &l ...

  6. poj 2409 Let it Bead && poj 1286 Necklace of Beads(Polya定理)

    题目:http://poj.org/problem?id=2409 题意:用k种不同的颜色给长度为n的项链染色 网上大神的题解: 1.旋转置换:一个有n个旋转置换,依次为旋转0,1,2,```n-1. ...

  7. Burnside引理与Polya定理

    感觉这两个东西好鬼畜= = ,考场上出了肯定不会qwq.不过还是学一下吧用来装逼也是极好的 群的定义 与下文知识无关.. 给出一个集合$G = \{a, b, c, \dots \}$和集合上的二元运 ...

  8. POJ2154 Color(Polya定理)

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 11654   Accepted: 3756 Description Bead ...

  9. POJ 2409 Let it Bead:置换群 Polya定理

    题目链接:http://poj.org/problem?id=2409 题意: 有一串n个珠子穿起来的项链,你有k种颜色来给每一个珠子染色. 问你染色后有多少种不同的项链. 注:“不同”的概念是指无论 ...

随机推荐

  1. TypeScript入门四:TypeScript的类(class)

    TypeScript类的基本使用(修饰符) TypeScript类的抽象类(abstract) TypeScript类的高级技巧 一.TypeScript类的基本使用(修饰符) TypeScript的 ...

  2. DVA-subscriptions

    import { routerRedux } from 'dva/router' export default { namespace: 'notice', state: { notices:[], ...

  3. Windows下同时安装两个版本Jdk

    在项目开发中遇到了jdk版本切换的问题,于是尝试在电脑中安装jdk1.6和jdk1.7,话不多说马上开始 1 准备好两个版本的jdk路径 2 设置两个JAVA_HOME 3 设置总的动态切换的JAVA ...

  4. sudo身份切换

    sudo更改身份: 我们知道,使用 su 命令可以让普通用户切换到 root 身份去执行某些特权命令,但存在一些问题,比如说:仅仅为了一个特权操作就直接赋予普通用户控制系统的完整权限: 当多人使用同一 ...

  5. Hadoop_25_MapReduce实现日志清洗程序

    1.需求: 对web访问日志中的各字段识别切分,去除日志中不合法的记录,根据KPI统计需求,生成各类访问请求过滤数据 2.实现代码: a) 定义一个bean,用来记录日志数据中的各数据字段 packa ...

  6. python再学习笔记

    python各种半桶水QAQ,一些特性经常跟其他语言搞混,官方入门文档重读温习...... 最好用4个空格的缩进空值是Python里一个特殊的值,用None表示变量就是在程序中用来指向这些数据对象的, ...

  7. LoadRunner(3)

    一.性能测试的策略 重要的:基准测试.并发测试.在线综合场景测试 递增测试.极限测试... 1.基准测试:Benchmark Testing 含义:就是单用户测试,单用户.单测试点.执行n次: 作为后 ...

  8. 牛客练习赛42 C 出题的诀窍 (贡献,卡常)

    牛客练习赛42 C 出题的诀窍 链接:https://ac.nowcoder.com/acm/contest/393/C来源:牛客网 题目描述 给定m个长为n的序列a1,a2,-,ama_1 , a_ ...

  9. HDU - 3506 Monkey Party

    HDU - 3506 思路: 平行四边形不等式优化dp 这不就是石子归并(雾 代码: #pragma GCC optimize(2) #pragma GCC optimize(3) #pragma G ...

  10. mybatis详解(三)

    一,动态sql,where,trim,set和foreach parameterType的属性可以不用写 xml文件sql的书写 <select id="queryByParams&q ...