BZOJ1209 最佳包裹 (三维凸包 增量法)
题意
求三维凸包的表面积。
N≤100N\le100N≤100
题解
暴力往当前的凸包里加点。O(n2)O(n^2)O(n2)。题解详见大佬博客
扰动函数shakeshakeshake是为了避免四点共面。
CODE
实测epsepseps开到1e−101e-101e−10才过
#include <bits/stdc++.h>
using namespace std;
#define il inline
const double eps = 1e-10;
const int MAXN = 105;
il double Rand() { return rand()/(double)RAND_MAX; }
il double reps() { return (Rand()-0.5)*eps; };
int n;
struct point {
double x, y, z;
il void shake() { x+=reps(); y+=reps(); z+=reps(); }
il double len() { return sqrt(x*x + y*y + z*z); }
il point operator -(point o) { return (point){ x-o.x , y-o.y, z-o.z }; }
il point operator *(point o) { return (point){ y*o.z-z*o.y, z*o.x-x*o.z, x*o.y-y*o.x }; }
il double operator &(point o) { return x*o.x + y*o.y + z*o.z; }
}A[MAXN];
struct face {
int v[3];
il point normal() { return (A[v[1]]-A[v[0]]) * (A[v[2]]-A[v[0]]); }
il double area() { return normal().len() / 2; }
}f[MAXN<<1], tmp[MAXN<<1];
bool see(face a, point b) { return ( (b-A[a.v[0]])&a.normal() ) > 0; }
int cnt;
bool vis[MAXN][MAXN];
void Convex3D() {
f[++cnt] = (face) { {1, 2, 3} };
f[++cnt] = (face) { {3, 2, 1} };
for(int i = 4, cur; i <= n; ++i) {
cur = 0;
for(int j = 1, can; j <= cnt; ++j) {
if(!(can = see(f[j], A[i]))) tmp[++cur] = f[j];
for(int k = 0; k < 3; ++k) vis[f[j].v[k]][f[j].v[(k+1)%3]] = can;
}
for(int j = 1; j <= cnt; ++j)
for(int k = 0; k < 3; ++k) {
int u = f[j].v[k], v = f[j].v[(k+1)%3];
if(vis[u][v] && !vis[v][u]) tmp[++cur] = (face){ {u, v, i} };
}
for(int j = 1; j <= cur; ++j) f[j] = tmp[j]; cnt = cur;
}
}
int main() {
srand(19260817);
cin>>n;
for(int i = 1; i <= n; ++i) cin>>A[i].x>>A[i].y>>A[i].z, A[i].shake();
Convex3D();
double S = 0;
for(int i = 1; i <= cnt; ++i) S += f[i].area();
printf("%.6f\n", S);
}
BZOJ1209 最佳包裹 (三维凸包 增量法)的更多相关文章
- BZOJ1209 [HNOI2004]最佳包裹 三维凸包 计算几何
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1209 题目概括 给出立体的n个点.求三维凸包面积. 题解 增量法,看了一天,还是没有完全懂. 上板 ...
- bzoj 1209: [HNOI2004]最佳包裹 三维凸包
1209: [HNOI2004]最佳包裹 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 160 Solved: 58[Submit][Status] ...
- [Luogu4724][模板]三维凸包(增量构造法)
1.向量点积同二维,x1y1+x2y2+x3y3.向量叉积是行列式形式,(y1z2-z1y2,z1x2-x1z2,x1y2-y1x2). 2.增量构造法: 1)首先定义,一个平面由三个点唯一确定.一个 ...
- Luogu 4724 三维凸包
Luogu 4724 三维凸包 增量法,维护当前凸包,每次加入一个点 \(P\) ,视其为点光源,将可见面删去,新增由"晨昏线"(分割棱)与 \(P\) 构成的平面. 注意每个平面 ...
- POJ 3528--Ultimate Weapon(三维凸包)
Ultimate Weapon Time Limit: 2000MS Memory Limit: 131072K Total Submissions: 2430 Accepted: 1173 ...
- 洛谷P4724 【模板】三维凸包
题面 传送门 题解 先理一下关于立体几何的基本芝士好了--顺便全都是从\(xzy\)巨巨的博客上抄来的 加减 三维向量加减和二维向量一样 模长 \(|a|=\sqrt{x^2+y^2+z^2}\) 点 ...
- hdu4266(三维凸包模板题)
/*给出三维空间中的n个顶点,求解由这n个顶点构成的凸包表面的多边形个数. 增量法求解:首先任选4个点形成的一个四面体,然后每次新加一个点,分两种情况: 1> 在凸包内,则可以跳过 2> ...
- luogu P4724 模板 三维凸包
LINK:三维凸包 一个非常古老的知识点.估计也没啥用. 大体上了解了过程 能背下来就背下来吧. 一个bf:暴力枚举三个点 此时只需要判断所有的点都在这个面的另外一侧就可以说明这个面是三维凸包上的面了 ...
- HDU 4573 Throw the Stones(动态三维凸包)(2013 ACM-ICPC长沙赛区全国邀请赛)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4573 Problem Description Remember our childhood? A fe ...
随机推荐
- ASP.NET请求过程-视图如何返回客户端
本文主要讲控制器返回ActionResult后怎么变成html到客户端的. 控制器返回的各种类型 返回所有类型的基类ActionResult // // 摘要: // 表示操作方法的结果. publi ...
- ABP中的AutoMapper
在我们的业务中经常需要使用到类型之间的映射,特别是在和前端页面进行交互的时候,我们需要定义各种类型的Dto,并且需要需要这些Dto和数据库中的实体进行映射,对于有些大对象而言,需要赋值太多的属性,这样 ...
- 虚拟机性能监控与故障处理工具(深入理解java虚拟机三)
JDK自带的工具可以方便的帮助我们处理一些问题,包括查看JVM参数,分析内存变化,查看内存区域,查看线程等信息. 我们熟悉的有java.exe,javac.exe,javap.exe(偶尔用),jps ...
- 往List集合循环add(对象)得到的是重复对象
记录每次的错误,强大是慢慢的积累,先看看代码, 往list中循环添加RoleKungFu对象,看似没有问题,结果打印则显示: 全部是重复的数据!这是因为啥呢,因为将对象add入list中时,放入lis ...
- 更新到PS CC 2019 缩放的时候 按住shift变成不规则缩放了 反而不按住shift是等比例缩放
更新到PS CC 2019 缩放的时候 按住shift变成不规则缩放了 反而不按住shift是等比例缩放 更新到PS CC 2019 缩放的时候 按住shift变成不规则缩放了 反而不按住shift是 ...
- hdu 1045 要求全部逐一搜索完的深搜
#include<stdio.h> #include<string.h> int visit[10][10]; char map[10][10]; int n,ans,ss,t ...
- 使用MD5加密字符串
一.概念: MD5码以512位分组来处理输入的信息,且每一分组又被划分为16个32位子分组,经过了一系列的处理后,算法的输出由四个32位分组组成,将这四个32位分组级联后将生成一个128位散列值. 二 ...
- java常见排序算法
今天去面试的时候又考了排序算法,排序这个东西,你以为你懂了,但是真正去写的时候才会发现好多细节自己都模棱两可,我写着写着就全都乱了,回来之后赶紧重新写一遍. (1)冒泡排序 public void b ...
- JQuery里input属性赋值,取值prop()和attr()方法?
一.赋值的时候 如果是<input type="checkbox" checked>这样的只有属性名就能生效的属性 推荐prop,即:$('input').prop(' ...
- jQuery的显示和隐藏
在 jQuery 中可以使用 hide() 和 show() 方法来隐藏和显示 HTML 元素,以及使用 toggle() 方法能够切换 hide() 和 show() 方法. 隐藏例子: <! ...