luogu题解 UVA534 【Frogger--最小瓶颈边
题目链接:
Update 6.18
多点对最短瓶颈路算法:https://www.cnblogs.com/Rye-Catcher/p/9194967.html
思路:
题意就是叫你求\(1,2\)点之间的最小瓶颈路,何谓最小瓶颈路呢?
对于无向图\(u,v\)两个顶点,若两个顶点有多条路径,设第\(i\)条路径经过边权最大的边权为\(w[i]\),那么\(u,v\)两点的最小瓶颈路就是\(min(w[i])\)
我们用Kruskal,将边权从小到大排序后构建MST,若加入两点\(u,v\)且\(fa[u]=1\) \(fa[v]=2\),则此时的边权\(edge(u,v)\)就是最小瓶颈路
为了上述处理过程我们用带权路径压缩并查集,\(rk[1]\) \(rk[2]\)设为很大的数(暴力的数),以保证生成树中两点的祖先都是\(1\)或\(2\)
同时注意UVA很多题目的特点:毒瘤输出
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <cctype>
#include <cstring>
#define ri register int
#define ll long long
using namespace std;
const int maxn=205;
struct Edge{
int u,v;
double dis;
bool operator<(const Edge & b)const{
return dis<b.dis;
}
}edge[1926081];
int n;
int fa[maxn],rk[maxn];
int px[maxn],py[maxn];
int get(int x){
if(fa[x]!=x)fa[x]=get(fa[x]);
return fa[x];
}
inline void merge(int x,int y){
if(rk[x]>rk[y]){
fa[y]=x;
rk[x]+=rk[y];
}
else
{
fa[x]=y;
rk[y]+=rk[x];
}
return ;
}
int main(){
int u,v,e,t=0;
while(scanf("%d",&n)!=EOF){
if(!n)break;t++;
int cnt=0,tot=0;
for(ri i=1;i<=n;i++){
fa[i]=i,rk[i]=0;
scanf("%d %d",&px[i],&py[i]);
for(ri j=1;j<i;j++){
double d=sqrt((double)(px[i]-px[j])*(px[i]-px[j])+(double)(py[i]-py[j])*(py[i]-py[j]));
edge[++tot].u=i,edge[tot].v=j;
edge[tot].dis=d;
}
}
rk[1]=rk[2]=1926817;
sort(edge+1,edge+1+tot);
for(ri i=1;i<=tot;i++){
u=edge[i].u,v=edge[i].v;
u=get(u),v=get(v);
if(u!=v){
cnt++;
if((u==1&&v==2)||(u==2&&v==1)){
printf("Scenario #%d\n",t);
printf("Frog Distance = %.3lf\n\n",edge[i].dis);
//printf("%.3lf\n",edge[i].dis);
break;
}
else{
merge(u,v);
}
}
if(cnt==n-1)break;
}
memset(edge,0,sizeof(edge));
}
return 0;
}
luogu题解 UVA534 【Frogger--最小瓶颈边的更多相关文章
- 【UVA534】Frogger 最小瓶颈路
题目大意:给定一张 N 个点的完全图,求 1,2 号节点之间的一条最小瓶颈路. 题解:可知,最小瓶颈路一定存在于最小生成树(最小瓶颈树)中.因此,直接跑克鲁斯卡尔算法,当 1,2 号节点在同一个联通块 ...
- poj 2253 Frogger 最小瓶颈路(变形的最小生成树 prim算法解决(需要很好的理解prim))
传送门: http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS Memory Limit: 65536K Total Submissi ...
- 最小瓶颈路 Uva 534 Frogger
说明:关于Uva的题目,可以在vjudge上做的,不用到Uva(那个极其慢的)网站去做. 最小瓶颈路:找u到v的一条路径满足最大边权值尽量小 先求最小生成树,然后u到v的路径在树上是唯一的,答案就是这 ...
- POJ 2253 Frogger【最短路变形/最小生成树的最大权/最小瓶颈树/A到B多条路径中的最小的最长边】
Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sit ...
- 【uva 534】Frogger(图论--最小瓶颈路 模版题)
题意:平面上有N个石头,给出坐标.一只青蛙从1号石头跳到2号石头,使路径上的最长便最短.输出这个值.(2≤N≤200) 解法:最小瓶颈树.而由于这题N比较小便可以用2种方法:1.最短路径中提到过的Fl ...
- 【UVA10816】Travel in Desert (最小瓶颈路+最短路)
UVA10816 Travel in Desert 题目大意 沙漠中有一些道路,每个道路有一个温度和距离,要求s,t两点间的一条路径,满足温度最大值最小,并且长度最短 输入格式 输入包含多组数据. 每 ...
- HDU4081:Qin Shi Huang's National Road System (任意两点间的最小瓶颈路)
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- P1396 营救(最小瓶颈路)
题目描述 “咚咚咚……”“查水表!”原来是查水表来了,现在哪里找这么热心上门的查表员啊!小明感动的热泪盈眶,开起了门…… 妈妈下班回家,街坊邻居说小明被一群陌生人强行押上了警车!妈妈丰富的经验告诉她小 ...
- CF600 div2 F.Cheap Robot(思维+最短路+最小瓶颈路)
最开始啃这题的时候我还是个不会$lca$的人,看代码看的没有一点头绪,现在趁着寒假补了很多关于图论的知识点,回头在看这题还是有很多值得学习的地方. Solution 1 (offline): 原题解: ...
随机推荐
- javascript 取小数点后几位四种方法
javascript 取小数点后几位方法总结 Javascript取float型小数点后两位,例22.123456取成22.12,如何做? 1.通过substring截取. function getn ...
- 解决Vue在IE中报错出现不支持=>等ES6语法和“Promise”未定义等问题
在做VUE项目中大家可能会发现除了IE内核浏览器之外项目都能正常显示,但是到IE就萎了,这主要是IE不支持ES6的原因. 要解决这个我们要先引入browser.js,这样你可以使用ES2015(jav ...
- 代码实现将键盘录入的数据拷贝到当前项目下的text.txt文件中,键盘录入数据当遇到quit时就退出
package com.looaderman.test; import java.io.FileNotFoundException; import java.io.FileOutputStream; ...
- [spring]基于注解的spring配置
Spring是一个基于IOC和AOP的结构J2EE系统的框架 IOC 反转控制 是Spring的基础,Inversion Of Control 简单说就是创建对象由以前的程序员自己new 构造方法来调 ...
- 七十六:flask.Restful之flask-Restful插件的基本使用
安装:flask 0.8以上.python2.6或者3.3以上:pip install flask-restful 使用方法:1.从flask_restful中导入Api,来创建对象 2.写一个视图函 ...
- Linux Openssh源码升级
telnet服务 yum install -y telnet-server xinetd systemctl start xinetd systemctl start telnet.socket #监 ...
- 【SVN】导出项目后报错汇总
原文链接 1.jsp页面内:标点符号,引入报错 解决方法:关闭此项目的jsp验证,右键,最下面一个,Verification,右边一溜只留一个dtd就好 2. 编码问题-乱码 刚拉下来的项目编码可能与 ...
- (C#)Appium自动化测试之mobile:shell输入法
1.ADB执行Shell命令 a.如果电脑上已装Appium,那么需要在高级设置里勾选 Relaxed Security. 如图: b.cmd命令行启动appium appium --rela ...
- 【AMAD】django-guradian -- 为Django加入单个对象级别的权限
动机 简介 个人评分 动机 django默认的permission系统就是将将能用的程度.默认授权会将一个数据表所有数据的权限都授予,而现实世界不是这样.很多时候,我们仅想授权数据的一小部分给用户. ...
- linux下Eclipse进行C编程时动态链接库的生成和使用
引用 http://linux.chinaitlab.com/soft/864157.html 欢迎进入Linux社区论坛,与200万技术人员互动交流 >>进入 一.创建动态链接库1.创建 ...