bzoj

先搞第一问.考虑简单情况,如果\(m=2\),那么一定有个剩余类大小\(\ge \lceil\frac{n}{2}\rceil\),同时这也是答案下界

然后我们每次随机选出一个数\(a_i\),然后钦定它在我们要的剩余类里,现在再枚举其他数,看一下最多有多少个数\(a_j\)可以和他模\(m\)同余,也就是选最多的数满足\(\gcd(|a_i-a_{j_1}|,|a_i-a_{j_2}|,|a_i-a_{j_3}|...)>1\).那对于每个\(j\),把所有\(|a_i-a_j|\)的质因子位置全\(+1\)--因为\(m\)取质数显然比取合数优.最后\(cnt_p\)的最大值即为第一问答案

第二问的话,因为是\(\gcd(...)>1\),那我们对于每个质数位置维护\(|a_i-a_j|\)为它倍数的\(\gcd(|a_i-a_j|...)\),这样第二问答案就是第一问最大的位置上最大的这个\(\gcd\)

#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define db double using namespace std;
const int N=1e5+10,M=N*100;
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n,a[N],prm[N*10],tt,pp[M],a1,a2,c1[M],c2[M]; int main()
{
for(int i=2;i<=10000000;++i)
{
if(!pp[i]) pp[i]=i,prm[++tt]=i;
for(int j=1;i*prm[j]<=10000000;++j)
{
pp[i*prm[j]]=prm[j];
if(i%prm[j]==0) break;
}
}
n=rd();
for(int i=1;i<=n;++i) a[i]=rd();
int Q=10;
while(Q--)
{
int ii=rand()%n+1,bs=0;
for(int i=1;i<=n;++i)
{
if(a[i]==a[ii]){++bs;continue;}
int x=abs(a[i]-a[ii]),xx=x,las=0;
while(x>1)
{
if(pp[x]!=las)
++c1[pp[x]],c2[pp[x]]=__gcd(xx,c2[pp[x]]);
las=pp[x],x/=pp[x];
}
}
for(int i=1;i<=n;++i)
{
if(a[ii]==a[i]) continue;
int x=abs(a[i]-a[ii]);
while(x>1)
{
if(c1[pp[x]]+bs>a1||(c1[pp[x]]+bs==a1&&c2[pp[x]]>a2))
a1=c1[pp[x]]+bs,a2=c2[pp[x]];
c1[pp[x]]=c2[pp[x]]=0;
x/=pp[x];
}
}
}
printf("%d %d\n",a1,a2);
return 0;
}

bzoj 3837 pa2013 Filary的更多相关文章

  1. bzoj 3837 (随机过题法了解一下)

    3837: [Pa2013]Filary Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 395  Solved: 74[Submit][Status] ...

  2. 【BZOJ3837】[Pa2013]Filary 随机化神题

    [BZOJ3837][Pa2013]Filary Description 给定n个正整数,从中挑出k个数,满足:存在某一个m(m>=2),使得这k个数模m的余数相等. 求出k的最大值,并求出此时 ...

  3. 【BZOJ3837】[PA2013]Filary

    [BZOJ3837][PA2013]Filary 题面 darkbzoj 题解 考虑到模数为\(2\)时答案至少为\(\frac n2\),这是我们答案的下界. 那么我们对于任意的一个数,它们答案集合 ...

  4. BZOJ 3736: [Pa2013]Karty

    Description 一个0/1矩阵,求能覆盖所有 \(1\) ,同时不覆盖所有 \(0\) 的矩阵,使这个面积最大. Sol DP/悬线法. 首先,所求的矩阵一定可以覆盖所有贴边的悬线. 用悬线法 ...

  5. BZOJ3837 : [Pa2013]Filary

    当m取2时,k至少为$\frac{n}{2}$ 所以在最优解中每个数被选中的概率至少为$\frac{1}{2}$ 每次随机选取一个位置i,计算出其它数与$a_i$的差值,将差值分解质因数 所有质因数中 ...

  6. [BZOJ]3737 [Pa2013]Euler

    从这个FB开始写博客啦. 也不知道会坚持多久…… = =似乎要加一句转载请注明出处 http://www.cnblogs.com/DancingOnTheTree/p/4026076.html htt ...

  7. Bzoj3837 [Pa2013]Filary(随机化)

    题面 权限题 题解 这题有一个很好的性质,就是一定有$k>\frac n2$.接着考虑怎么做. 我们随机选取一个数$x$,然后将所有数与它作差,那么只需要找出$k$个差值使得他们的最大公因数大于 ...

  8. BZOJ 3733 [Pa2013]Iloczyn 模拟爆搜

    Description 给定正整数n和k,问能否将n分解为k个不同正整数的乘积 Input 第一行一个数T(T<=4000)表示测试组数 接下来T行每行两个数n(n<=10^9),k(k& ...

  9. bzoj 3733: [Pa2013]Iloczyn【dfs】

    参考:http://www.cnblogs.com/clrs97/p/5125976.html 瞎搞约数失败...滚去搜索 dfs(x,y,z) 表示当前可选第x到第m个约数,还要选y个约数,已有z的 ...

随机推荐

  1. xftp上传文件到虚拟机linux失败问题

    如果想通过xftp上传文件到虚拟机linux时,可能会产生上传失败的问题 原因: 因为有些文件是只可读,所以要修改文件权限,可读可写,才可以上传成功. 解决方法: 第一种方法:用xftp连接虚拟机后, ...

  2. 转:VMware 15 安装 MAC OS 10.13 原版(详细图文教程)

    -----------------转载------------------------ 原文:https://blog.csdn.net/qq_40147863/article/details/847 ...

  3. python:网络爬虫的学习笔记

    如果要爬取的内容嵌在网页源代码中的话,直接下载网页源代码再利用正则表达式来寻找就ok了.下面是个简单的例子: import urllib.request html = urllib.request.u ...

  4. jmeter也能做Webservice接口测试

    百度到天气预报接口:http://www.webxml.com.cn/WebServices/WeatherWebService.asmx?wsdl 新增RPC接口线程 调取的参数及调取天气结果的显示 ...

  5. jdk git maven Jenkins的配置

    前言 搭建Jenkins的笔记. JDK 1.  jdk 下载地址 https://www.oracle.com/technetwork/java/javase/downloads/jdk8-down ...

  6. 手把手教你 iOS通过自己的服务器实现应用分发

    第一步:打包ipa 1:可以是development.ad-hoc.enterprise任何一种打包方式,导出的ipa, 稍后会将安装包上传到服务器上. 2:如下图,箭头指的要打勾 3.点击下一步后出 ...

  7. MonkeyRunner基本操作

    1. #导入模块; from com.android.monkeyrunner import MonkeyRunner, MonkeyDevice, MonkeyImage 2. #连接当前设备,并返 ...

  8. Centos 在线安装 nginx

    centos 在线安装 nginx 安装nginx ​ 参考文档: http://nginx.org/en/linux_packages.html 中的RHEL/CentOS章节,按照步骤安装repo ...

  9. python解压压缩包

    默认解压到当前目录 import shutil shutil.unpack_archive('/root/redis-3.2.3.tar.gz') 解压到home目录下 import shutil s ...

  10. Kubernetes中的PV和PVC

    K8S引入了一组叫作Persistent Volume Claim(PVC)和Persistent Volume(PV)的API对象,大大降低了用户声明和使用持久化Volume的门槛.在Pod的Vol ...