Lanenet

一个端到端的网络,包含Lanenet+HNet两个网络模型,其中,Lanenet完成对车道线的实例分割,HNet是一个小网络结构,负责预测变换矩阵H,使用转换矩阵H对同属一条车道线的所有像素点进行重新建模

将语义分割和对像素进行向量表示结合起来的多任务模型,最近利用聚类完成对车道线的实例分割。

将实例分割任务拆解成语义分割和聚类,分割分支负责对输入图像进行语义分割(对像素进行二分类,判断像素属于车道线还是背景),嵌入分支对像素进行嵌入式表示,可将分割后得的车道线分离成不同的车道实例,训练得到的向量用于聚类。最后将两个分支的结果利用MeanShift算法进行聚类,得到实例分割的结果。

当得到车道实例后,就需要对每条线做参数描述,曲线拟合算法作为这个参数描述,常用的拟合算法有三次多项式,样条曲线,回旋曲线。为了提高拟合质量,通常将图像转到鸟瞰图后做拟合,再逆变换到原图。

1.语义分割

训练输出得到一个二值化的分割图,白色代表车道线,黑色代表背景。

设计模型时主要,主要考虑了以下两点:

1)在构建Label标签时,为了处理遮挡问题,将可能属于每条车道线对应的像素都连成线。好处是即使车道线被遮挡了,网络仍能预测车道位置。

2)Loss使用交叉熵,为了解决样本分布不均衡问题(属于车道线的像素远少于属于背景的像素),使用Bounded Inverse class weight 对 Loss进行加权:

Wclass=1ln(c + p(class))

其中,p为对应类别在总体样本中出现的概率,c是超参数。


2.实例分割
       当分割分支识别得到车道后,为了分离车道像素(就是为了知道哪些像素归这条,哪些归那条车道),我们训练了一个车道instance embedding分支网络,我们用基于one-shot的方法做距离度量学习,该方法易于集成在标准的前馈神经网络中,可用于实时处理。利用聚类损失函数,instance embedding分支训练后输出一个车道线像素点距离,归属同一车道的像素点距离近,反之远,基于这个策略,可聚类得到各条车道线.

大致原理如下:

有两股力在做较量,一股是方差项,主要是将每个embedding往某条车道线的均值方向拉(激活拉这个动作的前提是embedding太远了,远于阈值δv就开始pull),另一股是距离项,就是使两个类别的车道线越远越好(激活推这个动作的前提是两条车道线聚类中心的距离太近啦,近于阈值δd就push)。最后这个总损失函数L的公式如下:

聚类

聚类可以看做是后处理,前一步的Embedding_branch 已经为聚类提供好了特征向量,利用这些特征向量可以用任何聚类算法完成实例分割的目标。

终止聚类的条件是:车道聚类(即各车道线间间距)中心间距离>δd,每个类(每条车道线)中包含的车道线像素离该车道线距离<δv  设置 δd > 6δv为迭代终止条件,使上述的loss做迭代。

网络架构

基于ENet的encoder-deconder模型,ENet由5个stage组成,其中stage2和stage3基本相同,stage1,2,3属于encoder,stage4,5属于decoder。

Lanenet网络共享前面两个stage1,2,并将stage3和后面的decoder层作为各自的分支进行训练。其中语义分割分支输出单通道的图像W*H*2。embedding分支输出N通道的图像W*H*N。两个分支的loss权重相同。

用H-NET做车道线曲线拟合
lanenet网络输出的是每条车道线的像素集合。常规处理是将图像转为鸟瞰图,这么做的目的就是为了做曲线拟合时弯曲的车道能用2次或3次多项式拟合(拟合起来简单些)。但变换矩阵H只被计算一次,所有图片使用相同变换矩阵,导致地平面(山地,丘陵)变化下的误差。

为了解决这个问题,需要训练一个可以预测变换矩阵H的神经网络HNet,网络输入是图片,输出是变换矩阵H:

通过置0对转置矩阵进行约束,即水平线在变换下保持水平。(坐标y的变换不受坐标x的影响)

意思就是通过H-Net网络学习得到的变换矩阵参数适用性更好,转置矩阵H只有6个参数,HNet输出一个6维向量,HNet由6层普通卷积网络和一层全连接层构成。

曲线拟合

通过坐标y去重新预测坐标x的过程:

。对于包含N个像素点的车道线,每个像素点pi=[xi,yi,1]T∈Ppi=[xi,yi,1]T∈P, 首先使用 H-Net 的预测输出 H 对其进行坐标变换:

P′=HPP′=HP

  • 随后使用 最小二乘法对 3d 多项式的参数进行拟合:

w=(YTY)−1YTx′w=(YTY)−1YTx′

  • 根据拟合出的参数 w=[α,β,γ]Tw=[α,β,γ]T 预测出 x′∗ixi′∗

x′∗i=αy′2+βy′+γxi′∗=αy′2+βy′+γ

  • 最后将 x′∗ixi′∗ 投影回去:

p∗i=H−1p′∗i

拟合函数

Loss=1/N∑Ni=1(x∗i−xi)2

模型网络设置(帧率达50fps)

LaneNet

Dataset : Tusimple embedding维度是4(输出4通道),δv=0.5,δd=3,输入图像resize到512x256,采用Adam优化器,batchsize=8,学习率=5e-4;

H-Net

Dataset : Tusimple,3阶多项式,输入图像128x64,Adam优化器,batchsize=10,学习率=5e-5;

评估标准:

accuracy=2/(1/recall+1/precision)

recall=|P1∩G1|/|G1|     # 统计GT中车道线分对的概率

precision=|P0∩G0|/|G0| # 统计GT中背景分对的概率

设定 G1 代表 GT二值图里像素值为 1 部分的集合,P1 表示检测结果为 1 的集合。

fp=(|P1|−|P1∩G1|)/|P1|   # 统计Pre中的车道线误检率

fn=(|G1|−|P1∩G1|)/|G1| # 统计GT车道线中漏检率

相关试验:

1.替换Backbone为moblilenet_v2

2.调整embedding维度

3.预处理方式调整

4.上采样方式替换

5.学习率衰减方式

6.反卷积卷积核尺寸调整

代码结构:

lanenet_detection

    ├── config //配置文件
├── data //一些样例图片和曲线拟合参数文件
├── data_provider // 用于加载数据以及制作 tfrecords
├── lanenet_model
│ ├── lanenet.py //网络布局 inference/compute_loss/compute_acc
│ ├── lanenet_front_end.py // backbone 布局
│ ├── lanenet_back_end.py // 网络任务和Loss计算 inference/compute_loss
│ ├── lanenet_discriminative_loss.py //discriminative_loss实现
│ ├── lanenet_postprocess.py // 后处理操作,包括聚类和曲线拟合
├── model //保存模型的目录semantic_segmentation_zoo
├── semantic_segmentation_zoo // backbone 网络定义
│ ├── __init__.py
│ ├── vgg16_based_fcn.py //VGG backbone
│ └─+ mobilenet_v2_based_fcn.py //mobilenet_v2 backbone
│ └── cnn_basenet.py // 基础 block
├── tools //训练、测试主函数
│ ├── train_lanenet.py //训练
│ ├── test_lanenet.py //测试
│ └──+ evaluate_dataset.py // 数据集评测 accuracy
│ └── evaluate_lanenet_on_tusimple.py // 数据集检测结果保存
│ └── evaluate_model_utils.py // 评测相关函数 calculate_model_precision/calculate_model_fp/calculate_model_fn
│ └── generate_tusimple_dataset.py // 原始数据转换格式
├─+ showname.py //模型变量名查看
├─+ change_name.py //模型变量名修改
├─+ freeze_graph.py//生成pb文件
├─+ convert_weights.py//对权重进行转换,为了模型的预训练
└─+ convert_pb.py //生成pb文

语义分割之车道线检测Lanenet(tensorflow版)的更多相关文章

  1. 深度学习笔记(十二)车道线检测 LaneNet

    论文:Towards End-to-End Lane Detection: an Instance Segmentation Approach 代码:https://github.com/MaybeS ...

  2. 车道线检测LaneNet

    LaneNet LanNet Segmentation branch 完成语义分割,即判断出像素属于车道or背景 Embedding branch 完成像素的向量表示,用于后续聚类,以完成实例分割 H ...

  3. 带你读AI论文丨LaneNet基于实体分割的端到端车道线检测

    摘要:LaneNet是一种端到端的车道线检测方法,包含 LanNet + H-Net 两个网络模型. 本文分享自华为云社区<[论文解读]LaneNet基于实体分割的端到端车道线检测>,作者 ...

  4. SCNN车道线检测--(SCNN)Spatial As Deep: Spatial CNN for Traffic Scene Understanding(论文解读)

    Spatial As Deep: Spatial CNN for Traffic Scene Understanding 收录:AAAI2018 (AAAI Conference on Artific ...

  5. 深度学习笔记(十四)车道线检测 SCNN

    论文:Spatial As Deep: Spatial CNN for Traffic Scene Understanding 代码:https://github.com/XingangPan/SCN ...

  6. 3D车道线检测:Gen-LaneNet

    3D车道线检测:Gen-LaneNet Gen-LaneNet: A Generalized and Scalable Approach for 3D Lane Detection 论文链接:http ...

  7. Lane-Detection 近期车道线检测论文阅读总结

    近期阅读的几篇关于车道线检测的论文总结. 1. 车道线检测任务需求分析 1.1 问题分析 针对车道线检测任务,需要明确的问题包括: (1)如何对车道线建模,即用什么方式来表示车道线. 从应用的角度来说 ...

  8. opencv车道线检测

    opencv车道线检测 完成的功能 图像裁剪:通过设定图像ROI区域,拷贝图像获得裁剪图像 反透视变换:用的是老师给的视频,没有对应的变换矩阵.所以建立二维坐标,通过四点映射的方法计算矩阵,进行反透视 ...

  9. 车道线检测github集锦

    re1. github_lane_detection; end

随机推荐

  1. RocketMQ之四:RocketMq事务消息

    事务消息 通过消息的异步事务,可以保证本地事务和消息发送同时执行成功或失败,从而保证了数据的最终一致性. 发送端执行如下几步: 发送prepare消息,该消息对Consumer不可见 执行本地事务(如 ...

  2. .NET中的简单的并行

    https://www.cnblogs.com/hdwgxz/p/6129419.html https://www.cnblogs.com/hueychan/p/10575907.html

  3. zabbix3.0升级到4.0

    升级步鄹: 3.0->3.2 1.停服务 service zabbix-server stop 2.备份配置文件 #cp /etc/zabbix/zabbix_server.conf /data ...

  4. SpringBoot搭建聚合项目-实战记录01

    工具:Spring Tool Suite 4 项目搭建 1.首先建立工作集 : Configure Working Sets -> New.. ->设置名称(如project) -> ...

  5. Linux添加日常任务监控文件或日志大小

    1.使用命令"vi/vim xxx.sh"编写shell脚本文件 #!/bin/bash #author yangli # #设置文件检测路径 file_check_path=&q ...

  6. js单击事件

    <script type="text/javascript"> // 根据ID获取元素,得到按钮[注册] var elbtn=document.getElementBy ...

  7. ByteArrayInputStream类

    一.说明 哈哈,这是学习Java之路的第一篇博文.虽然说接触学习Java有一段时间了,但是对流的概念一直并不是很清楚.也看了很多资料,但是感觉还是非常的抽象很难去理解.但是流又是Java中很重要的一部 ...

  8. C++类的对象和类的指针的区别

    #include <iostream> #include <string> using namespace std; class Student { public: stati ...

  9. Tesseract机器识别

    1.合并图片打开jtessboxeditor,点击Tools->Merge Tiff ,按住shift键选择前文提到的101个tif文件,并把生成的tif合并到新目录d:\python\lnyp ...

  10. lesson12Homework

    package StringPractice; public class arrayTest { //1. 把A数组的前5个元素复制到B数组中. public static void main(Str ...