一、常微分方程的求解

例1、

例2、

例3、

通常我们使用syms 和dsolve来求解;

first:

second:表示

third:如果有必要

功能函数diff可以完成一元或多元函数任意阶数的微分:
(对于自变量的个数多于一个的符号矩阵,微分为Jocabian矩阵,采用功能函数Jacobian实现)
1、diff函数
diff(S,'v'):将符号“ v ”视作变量,对符号表达式或者符号矩阵求取微分。
diff(S,n):将S中的默认变量进行n阶微分运算,其中默认变量可用findsym函数确定。
diff(S,'v',n):将符号“ v ”视作变量,对符号表达式或矩阵S进行n阶微分运算。

2、jacobian函数

R=jacobian(w,v):其中w是一个符号列向量,v是指定进行变换的变量所组成的行向量。
(第一个参数必须是列向量,第二个参数必须是行向量)

隐函数的初值问题求解:

Matlab求微分方程的符号解1的更多相关文章

  1. Matlab求齐次方程的解

    % 求Ax=0的解: r=rank(A): x=null(A,r) 求出来x的是归一化后的解.

  2. 用Matlab求解微分方程

    用Matlab求解微分方程 解微分方程有两种解,一种是解析解,一种是数值解,这两种分别对应不同的解法 解析解 利用dsolve函数进行求解 syms x; s = dsolve('eq1,eq2,.. ...

  3. Matlab求极限

    matlab求极限(可用来验证度量函数或者隶属度函数)可用来验证是否收敛,取值范围等等. 一.问题来源 搜集聚类资料时,又看到了隶属度函数,没错,就是下面这个,期间作者提到m趋于2是,结果趋于1,我想 ...

  4. matlab求取积分

    声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 对于Matlab的使用情况常常是这样子的,很多零碎的函数名字很难记忆,经常用过后过一段时间就又忘记了,又得去网 ...

  5. Matlab中利用null函数解齐次线性方程组

    摘自:http://blog.csdn.net/masibuaa/article/details/8119032 有齐次线性方程AX=0,且rank(A)=r<n时,该方程有无穷多个解, 可以用 ...

  6. 【总结】matlab求两个序列的相关性

    首先说说自相关和互相关的概念.  自相关 在统计学中的定义,自相关函数就是将一个有序的随机变量系列与其自身作比较.每个不存在相位差的系列,都与其都与其自身相似,即在此情况下,自相关函数值最大. 在信号 ...

  7. matlab求曲线长度

    曲线段在上的弧长为采用积分所求弧长s=∫√(1+y'²)dxmatlab求出各点的导数,然后按照上式积分 clear>> x=1:0.1:10;>> y=rand(1,leng ...

  8. 01背包之求第K优解——Bone Collector II

    http://acm.hdu.edu.cn/showproblem.php?pid=2639 题目大意是,往背包里赛骨头,求第K优解,在普通01背包的基础上,增加一维空间,那么F[i,v,k]可以理解 ...

  9. MATLAB求马氏距离(Mahalanobis distance)

    MATLAB求马氏距离(Mahalanobis distance) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1.马氏距离计算公式 d2(xi,  ...

随机推荐

  1. 再论i++ ++i

    #include <stdio.h> int main(void) { char acData[5] ={'A','B','C','D','E'}; char *pcData = NULL ...

  2. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) D. Power Products

    链接: https://codeforces.com/contest/1247/problem/D 题意: You are given n positive integers a1,-,an, and ...

  3. python自动华 (十)

    Python自动化 [第十篇]:Python进阶-多进程/协程/事件驱动与Select\Poll\Epoll异步IO 本节内容: 多进程 协程 事件驱动与Select\Poll\Epoll异步IO   ...

  4. [Luogu] 树状数组

    https://www.luogu.org/problemnew/show/P3374 单点修改,区间查询 #include <iostream> #include <cstdio& ...

  5. [TJOI2019]唱、跳、rap和篮球

    嘟嘟嘟 TJ律师函警告 20分暴力比较好拿,因为每一种学生可以理解为无限多,那么总方案数就是\(C_{n} ^ {4}\),然后我们枚举至少讨论cxk的有几组,容斥即可. 需要注意的是,容斥的时候还要 ...

  6. 初次Java web项目的建立以及与数据库的连接

    题目要求: 1登录账号:要求由6到12位字母.数字.下划线组成,只有字母可以开头:(1分) 2登录密码:要求显示“• ”或“*”表示输入位数,密码要求八位以上字母.数字组成.(1分) 3性别:要求用单 ...

  7. elasticsearch java索引的增删改查

    1.创建索引并插入数据 Map<String, Object> json = new HashMap<String, Object>(); json.put("use ...

  8. pwn学习日记Day21 《程序员的自我修养》读书笔记

    Linux内核装载ELF过程 (1)bash进程调用fork()系统调用创建一个新的进程 (2)新的进程调用execve()系统调用执行指定的ELF文件,原先的bash进程继续返回等待刚才启动的新进程 ...

  9. delphi10.3.1不支持.net 5

    delphi10.3.1不支持.net 5 安装DELPHI的前提条件:WINDOWS必须安装有.NET. DELPHI安装程序在安装的时候会自动检测.NET是否已经安装好,如果发现没有,它会报错,并 ...

  10. Linunx创建软连接、删除软连接、修改软连接

    创建: ln -s [目标目录] [软链接地址] ln -s /usr/local/python3/bin/python3 /usr/bin/python3ln -s /usr/local/pytho ...