【Python】机器学习之单变量线性回归 利用批量梯度下降找到合适的参数值


本题目来自吴恩达机器学习视频。

题目:

你是一个餐厅的老板,你想在其他城市开分店,所以你得到了一些数据(数据在本文最下方),数据中包括不同的城市人口数和该城市带来的利润。第一列是城市的人口数,第二列是在这个城市开店所带来的利润数。

现在,假设一开始θ0和θ1都是0,利用梯度下降的方法,找到合适的θ值,其中学习速率α=0.01,迭代轮次为1000轮

上一个文章里,我们得出了CostFunction,即损失函数。

现在我们需要找到令损失函数最小的θ值,利用梯度下降函数

1、导包

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

2、之前写的CostFunction函数

def computeCost(X, y, theta):
inner = np.power(((X * theta.T) - y), 2)
return np.sum(inner) / (2 * len(X))

3、引入文件,把X和Y分开,在X左边加一列1,θ0和θ1设置为0,0

path = 'ex1data1.txt'
data = pd.read_csv(path, header=None, names=['Population', 'Profit'])
data.insert(0, 'Ones', 1)
rows = data.shape[0]
cols = data.shape[1]
X = data.iloc[:, 0:cols - 1]
Y = data.iloc[:, cols - 1:cols]
theta = np.mat('0,0')
X = np.mat(X.values)
Y = np.mat(Y.values) cost = computeCost(X, Y, theta)

4、设置更新速率α为0.01,设置迭代次数为1000次

alpha = 0.01
iters = 1500

5、写出梯度下降函数的实现

def gradientDescent(X, Y, theta, alpha, iters):
temp = np.mat(np.zeros(theta.shape)) # 一个数组,temp大小为θ的个数
parameters = int(theta.ravel().shape[1]) # 参数的个数
cost = np.zeros(iters) # 一个数组,存着每次计算出来的costFunction的值 for i in range(iters):
error = (X*theta.T)-Y; #误差值
for j in range(parameters):
term = np.multiply(error,X[:, j])
temp[0,j] = theta[0,j] - ((alpha/len(X)) * np.sum(term))
theta = temp
cost[i] = computeCost(X,Y,theta)
return theta, cost

解析:

temp数组存的是临时变量,因为所有的θ需要同步更新,所以先存入临时变量中,后面计算完所有θ的值后再同步更新。

parameters是一个int值的数,即有多少个变量,本题中有θ0和θ1,所以parameters=2

cost是一个数组,大小和迭代次数一样,每一层存放当前迭代次数下的CostFunction的返回值

6、调用函数,并返回结果

g, cost = gradientDescent(X, Y, theta, alpha, iters)
print(g)

最后结果g=[[-3.24140214  1.1272942 ]]

即最后的θ0=-3.24 θ1=1.127

7、把图打出来,看看是否收敛

fig, ax = plt.subplots(figsize=(12,8))
ax.plot(np.arange(iters),cost,'r')
ax.set_xlabel('Iterations')
ax.set_ylabel('Cost')
plt.show()

发现随着迭代次数iters的增大,损失慢慢的降低,所以有效,计算正确。

PS:数据集在机器学习的第一篇中的最下方。

【Python】机器学习之单变量线性回归 利用批量梯度下降找到合适的参数值的更多相关文章

  1. 【Python】机器学习之单变量线性回归 利用正规方程找到合适的参数值

    [Python]机器学习之单变量线性回归 利用正规方程找到合适的参数值 本次作业来自吴恩达机器学习. 你是一个餐厅的老板,你想在其他城市开分店,所以你得到了一些数据(数据在本文最下方),数据中包括不同 ...

  2. 机器学习 (一) 单变量线性回归 Linear Regression with One Variable

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...

  3. 吴恩达机器学习(二) 单变量线性回归(Linear Regression with one variable)

    一.模型表示 1.一些术语 如下图,房价预测.训练集给出了房屋面积和价格,下面介绍一些术语: x:输入变量或输入特征(input variable/features). y:输出变量或目标变量(out ...

  4. 机器学习之单变量线性回归(Linear Regression with One Variable)

    1. 模型表达(Model Representation) 我们的第一个学习算法是线性回归算法,让我们通过一个例子来开始.这个例子用来预测住房价格,我们使用一个数据集,该数据集包含俄勒冈州波特兰市的住 ...

  5. 【Python】机器学习之单变量线性回归练习(计算Cost Function)

    注:练习来自于吴恩达机器学习 翻译后的题目: 你是一个餐厅的老板,你想在其他城市开分店,所以你得到了一些数据(数据在本文最下方),数据中包括不同的城市人口数和该城市带来的利润.第一列是城市的人口数,第 ...

  6. python 单变量线性回归

      单变量线性回归(Linear Regression with One Variable)¶ In [54]: #初始化工作 import random import numpy as np imp ...

  7. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 2_Linear regression with one variable 单变量线性回归

    Lecture2   Linear regression with one variable  单变量线性回归 2.1 模型表示 Model Representation 2.1.1  线性回归 Li ...

  8. 机器学习第2课:单变量线性回归(Linear Regression with One Variable)

    2.1  模型表示 之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示: 我们将要用来描述这个回归问题的标记如下: m                代表训练集中实 ...

  9. 机器学习(二)--------单变量线性回归(Linear Regression with One Variable)

    面积与房价 训练集 (Training Set) Size       Price 2104       460 852         178 ...... m代表训练集中实例的数量x代表输入变量 ...

随机推荐

  1. JQuery 实践--让页面动起来

    获取和设置元素特性特性属性:是指DOM元素中能够和HTML元素中某个特性对应得上的属性.通常JS特性属性的名称与对应的特性一一匹配,但class <=>className操作特性还是操作属 ...

  2. 【题解】P1638 逛画展-C++

    原题传送门 思路这道题目可以通过尺取法来完成 (我才不管什么必须用队列)什么是尺取法呢?顾名思义,像尺子一样取一段,借用挑战书上面的话说,尺取法通常是对数组保存一对下标,即所选取的区间的左右端点,然后 ...

  3. 蓝牙4.0模块,AT指令集

    一,LED状态 二,蓝牙模块有两种通信模式 1,AT指令模式 2,数据透传模式 三.AT指令程序设计 1.设置模块的名字 void usart3_send_str(char *pbuf) { whil ...

  4. Django—Ajax

    Ajax-get url url(r'^ajax_add/', views.ajax_add), url(r'^ajax_demo1/', views.ajax_demo1), 视图 def ajax ...

  5. vxe-table 可编辑表格 行内编辑以及验证 element-UI集成

    <vxe-table border show-overflow ref="xTable"  ----------------------------------------- ...

  6. Devexpress GridControl中 repositoryItemCheckEdit作为选择列以及作为显示列的使用方法

    一.在gridcontrol列表控件中使用单选框作为选择列,这里有两种方式. 方式一:选择gridcontrol控件的Run Designer按钮,添加一列,设置该列的ColumnEdit为check ...

  7. ICEM-五通孔管

    原视频下载地址:https://yunpan.cn/cqaQ2t5DrRcKa  访问密码 d111

  8. Java操作Cookie方法

    特别提示:本人博客部分有参考网络其他博客,但均是本人亲手编写过并验证通过.如发现博客有错误,请及时提出以免误导其他人,谢谢!欢迎转载,但记得标明文章出处:http://www.cnblogs.com/ ...

  9. k-means和iosdata聚类算法在生活案例中的运用

    引言:聚类是将数据分成类或者簇的过程,从而使同簇的对象之间具有很高的相似度,而不同的簇的对象相似度则存在差异.聚类技术是一种迭代重定位技术,在我们的生活中也得到了广泛的运用,比如:零件分组.数据评价. ...

  10. XMLHttpRequest Level2 新功能

    XMLHttpRequest是浏览器的接口,使得javascript可以进行HTTP(S)通信: 2008年2月,就提出了XMLHttpRequest Level 2 草案. 这个XMLHttpReq ...