论文创新点:

  • 多头注意力
  • transformer模型

Transformer模型

上图为模型结构,左边为encoder,右边为decoder,各有N=6个相同的堆叠。

encoder

先对inputs进行Embedding,再将位置信息编码进去(cancat方式),位置编码如下:

然后经过多头注意力模块后,与残余连接cancat后进行一个Norm操作,多头注意力模块如下:

左图:缩放点乘注意力,这就是个平常的注意力机制,只不过多了scale和mask(仅对于decoder下面橙色框部分),使用的是dot-product attention,原文还提到另一种additive attention。

右图:多头注意力实现。每个Q,K,V都经过h个(不同)线性结构,以捕获不同子空间的信息,经过左图结构后,对h个dot-product attention进行concat后,再经过一个线性层。

之后,再通过一个有残余连接的前向网络。

decoder

同样先经过Embedding和位置编码,输入outputs右移了(因为每一个当前输出基于之前的输出)。

下面的橙色框:

之后也经过一个多头的self-attention,不同的是,它多了个mask操作。

这个mask操作是什么意思呢?注意我们的self-attention是一句话中每个词向量都与句子中所有词向量有关,对于encoder这没问题,而对于decoder,我们是根据之前的输出预测下一个输出。

举个例子,在BiLSTM中(当然这里是Transformer模型),假设我们decode时输入为A-B-C-D序列,在B处解码下一个输出时,我们根据之前的输出进行预测,但是这是双向模型,

即我们存在这样的一个之前的输出C-B-A-B,那么这个之前的输出里居然包含了我们下一个需要正确预测的C!这就是“自己看见自己”问题。

所以,mask操作是掩盖掉之后的位置(原文leftward,即向左流动的信息)的影响,原文是置为负无穷。这个橙色框我觉得可以称为half-self-attention。

最上面的橙色框:

它就不能叫self-attention结构了,因为它的K和V来自encoder的输出,Q是下面橙色框的输出。到这步为止,我们的输入inputs是完整的self-attention了,我们的输出outputs也是half-self-attention了。

好了,前戏准备完毕,开始短兵相接了。

这里的K和V一般相同,表示经过self-attention的隐藏语义向量,Q为经过half-self-attention的上一个输出,此处即为解码操作。经过一个有残余连接的前向网络,一个线性层,再softmax得到输出概率分布。

至此,Transformer模型描述完毕。


我们再看看self-attention模块,我之前一直不明白这些Q,K,V是啥东东。此处也是我个人推断

在self-attention中,K,V表示当前位置的词向量,Q表示所有位置的词向量,用Q中每一个词向量与K进行操作(类似上面缩放点乘注意力截止到softmax),得到L个(L为句子单词数)权重向量。

此时应该有2种操作,一种是对L个权重向量相加,一种是取平均。得到的结果权重向量与V点乘,即为有self-attention后的词向量。


其余的实验及结果部分不再讲述,没什么难点。

这里再提下另一篇论文《End-To-End Memory Networks》中的一个模型结构。因为这篇论文被上面论文提到,对于理解上面论文有所帮助。

上图左边为单层,右边为多层版本。

单层的输出为:

Embedding B和C用于将输入x和问题q转化为嵌入向量,Embedding A用另一套参数将输出x转化为嵌入向量,与问题q共同决定注意力权重。

因为右图涉及到众多参数,为了简化模型,作者提出2种方案,这里直接上图:

这篇论文的创新点在于右图的多层版本类似RNNs,运算复杂度也比拟RNNs,避免了RNNs存在的一些问题。在QA问题上取得不错的成绩。

bert系列一:《Attention is all you need》论文解读的更多相关文章

  1. Bert系列 源码解读 四 篇章

    Bert系列(一)——demo运行 Bert系列(二)——模型主体源码解读 Bert系列(三)——源码解读之Pre-trainBert系列(四)——源码解读之Fine-tune 转载自: https: ...

  2. Bert系列(三)——源码解读之Pre-train

    https://www.jianshu.com/p/22e462f01d8c pre-train是迁移学习的基础,虽然Google已经发布了各种预训练好的模型,而且因为资源消耗巨大,自己再预训练也不现 ...

  3. bert系列二:《BERT》论文解读

    论文<BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding> 以下陆续介绍ber ...

  4. Bert系列(二)——源码解读之模型主体

    本篇文章主要是解读模型主体代码modeling.py.在阅读这篇文章之前希望读者们对bert的相关理论有一定的了解,尤其是transformer的结构原理,网上的资料很多,本文内容对原理部分就不做过多 ...

  5. nlp任务中的传统分词器和Bert系列伴生的新分词器tokenizers介绍

    layout: blog title: Bert系列伴生的新分词器 date: 2020-04-29 09:31:52 tags: 5 categories: nlp mathjax: true ty ...

  6. Java容器--2021面试题系列教程(附答案解析)--大白话解读--JavaPub版本

    Java容器--2021面试题系列教程(附答案解析)--大白话解读--JavaPub版本 前言 序言 再高大上的框架,也需要扎实的基础才能玩转,高频面试问题更是基础中的高频实战要点. 适合阅读人群 J ...

  7. 论文解读(FedGAT)《Federated Graph Attention Network for Rumor Detection》

    论文信息 论文标题:Federated Graph Attention Network for Rumor Detection论文作者:Huidong Wang, Chuanzheng Bai, Ji ...

  8. BERT论文解读

    本文尽量贴合BERT的原论文,但考虑到要易于理解,所以并非逐句翻译,而是根据笔者的个人理解进行翻译,其中有一些论文没有解释清楚或者笔者未能深入理解的地方,都有放出原文,如有不当之处,请各位多多包含,并 ...

  9. [Attention Is All You Need]论文笔记

    主流的序列到序列模型都是基于含有encoder和decoder的复杂的循环或者卷积网络.而性能最好的模型在encoder和decoder之间加了attentnion机制.本文提出一种新的网络结构,摒弃 ...

随机推荐

  1. 小程序生成海报 canvas

    前言 微信小程序需要生成海报进行朋友圈分享,但是不同的手机会有问题, 然后首先是图片的问题 图片 在模拟器上没有报错,可是真机测试却什么也没画出来. canvas.drawImage 是不支持网络图片 ...

  2. @Valid与@Validated

    Spring Validation验证框架对参数的验证机制提供了@Validated(Spring's JSR-303规范,是标准JSR-303的一个变种),javax提供了@Valid(标准JSR- ...

  3. call和ret指令

    call和ret都是用来修改ip或cs:ip,可以用来实现子程序的设计:   1.ret和retf ret    ->修改ip的内容,从而实现近转移: retf    ->同时修改cs和i ...

  4. springboot错误1 Failed to execute goal org.springframework.boot:spring-boot-maven-plugin

    关于Springboot打包错误的问题 | Failed to execute goal org.springframework.boot:spring-boot-maven-plugin https ...

  5. java常用检验接口control方式

    @Controller public class ItemController { @Autowired private ItemService itemService; @RequestMappin ...

  6. JVM(八),垃圾回收标记算法

    八.垃圾回收标记算法 1.对象被判定成垃圾的标准 没有被其他对象引用 2.判断对象是否为垃圾的算法 (1)引用计数法 优点and缺点 (2)可达性分析算法

  7. BZOJ 1923: [Sdoi2010]外星千足虫 高斯消元+bitset

    高斯消元求解异或方程组,可以多学一下 $bitset$ 在位运算中的各种神奇操作. #include <cstdio> #include <bitset> #define N ...

  8. 十进制数转N进制c++实现

    编写一个算法,将一个非负的十进制整数N转换为另一个基数为B的B进制整数. #include <iostream> #include<string.h> using namesp ...

  9. 响应式web布局

    通过不同的媒体类型和条件定义样式表规则,媒体查询让CSS可以更精确作用于不同的媒体类型和同一媒体的不同条件.媒体查询的大部分媒体特性都接受min和max用于表达”大于或等于”和”小与或等于”.如:wi ...

  10. go之流程控制

    一.与用户交互 var name string fmt.Scanln(&name) # 一定得传指针,因为我要修改的是name的值 fmt.Println(name) 二.if判断 1.if ...