P1040 加分二叉树(区间DP)
解题思路
题目已经给出了树的中序遍历,因此我的想法是利用中序遍历的特点:若某子树的根结点为k,那么k之前的结点组成这一子树的左子树,k之后的结点组成这一子树的右子树,可以通过不断地枚举每个子树的根结点k,求出每个子树的最大加分:{ 左子树的最大加分*右子树的最大加分+ 根结点k的值}
以上是通过已知中序遍历想到是方法,结合已知条件,对于某一子树的中序遍历: {l, l + 1, ... , r} ,若根节点为k,那么 {l, l +1,...,k-1} 即为这一子树的左子树,{k+1,k+2,...,r}即为这一子树的右子树,因此,可以通过这种方法构造所有可能的树结构
根据上面的方法,我们通过递归求出每一段中序遍历{l,l+1,...,r}代表的子树的最大加分dp[l][r]以及根结点root[l][r],根据状态转移方程
dp[l][r] = max(dp[l][r],dp[l][k-1] + dp[k+1][r] + val[k]) { l <= k <= r}
并记录dp[l][r]取最大值时的根结点root[l][r],这样一来dp[1][n]即为我们所求的最大加分,又利用root和中序遍历求出前序遍历
代码区
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<queue>
#include<string>
#include<fstream>
#include<vector>
#include<stack>
#include <map>
#include <iomanip> #define bug cout << "**********" << endl
#define show(x, y) cout<<"["<<x<<","<<y<<"] "
#define LOCAL = 1;
using namespace std;
typedef long long ll;
const ll inf = 1e18 + ;
const int mod = 1e9 + ;
const int Max = 1e5 + ; int n;
ll val[];
ll dp[][]; //表示[l,r]子树的最大加分
int root[][]; //表示[l,r]子树的根结点
//dp,root均为以[l,r]组成的子树的数据 ll dfs(int l, int r)
{
if (l > r) //空树
return ;
if(l == r) //叶子节点
return dp[l][r] = val[l]; if (dp[l][r] != -)
{
return dp[l][r];
} for (int k = l; k <= r; k++) //枚举子树[l,r]的根结点
{
ll now = dfs(l,k-) * dfs(k + , r) + val[k];
if(now > dp[l][r])
dp[l][r] = now,root[l][r] = k;
}
return dp[l][r];
} void dfs2(int l,int r)
{
if(l > r) //空树
return;
printf("%d ",root[l][r]);
dfs2(l,root[l][r] - );
dfs2(root[l][r] + , r);
} int main()
{
#ifdef LOCAL
// freopen("input.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif
scanf("%d", &n);
for (int i = ; i <= n; i++)
scanf("%lld", val + i),root[i][i] = i; memset(dp,-,sizeof(dp));
dfs(,n); printf("%lld\n",dp[][n]);
dfs2(,n);
printf("\n");
return ;
}
P1040 加分二叉树(区间DP)的更多相关文章
- 洛谷P1040 加分二叉树(区间dp)
P1040 加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di, ...
- P1040 加分二叉树 区间dp
题目描述 设一个nn个节点的二叉树tree的中序遍历为(1,2,3,…,n1,2,3,…,n),其中数字1,2,3,…,n1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第ii个节 ...
- [Swust OJ 360]--加分二叉树(区间dp)
题目链接:http://acm.swust.edu.cn/problem/360/ Time limit(ms): 1000 Memory limit(kb): 65535 Description ...
- cogs 106. [NOIP2003] 加分二叉树(区间DP)
106. [NOIP2003] 加分二叉树 ★☆ 输入文件:jfecs.in 输出文件:jfecs.out 简单对比时间限制:1 s 内存限制:128 MB [问题描述] 设 一个 n ...
- 【洛谷】P1040 加分二叉树
[洛谷]P1040 加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数 ...
- 【Luogu】P1040加分二叉树(区间DP)
题目链接 区间DP,因为中序遍历的性质:区间[l,r]的任何一个数都可以是该区间的根节点. 更新权值的时候记录区间的根节点,最后DFS输出. 见代码. #include<cstdio> # ...
- 洛谷P1040 加分二叉树(树形dp)
加分二叉树 时间限制: 1 Sec 内存限制: 125 MB提交: 11 解决: 7 题目描述 设一个n个节点的二叉树tree的中序遍历为(l,2,3,...,n),其中数字1,2,3,...,n ...
- [NOIP2003] 提高组 洛谷P1040 加分二叉树
题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都 ...
- P1040 加分二叉树
转自:(http://www.cnblogs.com/geek-007/p/7197439.html) 经典例题:加分二叉树(Luogu 1040) 设一个 n 个节点的二叉树 tree 的中序遍历为 ...
- 【luogu P1040 加分二叉树】 题解
题目链接:https://www.luogu.org/problemnew/show/P1040 今天考试考了一个区间DP...没错就是这个... 太蒟了真是连区间DP都不会...看了看题解也看不懂, ...
随机推荐
- SSH 远程上传本地文件至服务器
使用SSH命令行传输文件到远程服务器 以前一直在windows下用SSH Secure Shell连接远程服务器,它自带了一个可视化的文件传输工具,跟ftp差不多 但是它也存在一个缺陷,不支持编码 ...
- 2Dot grammar
http://www.cnblogs.com/mjios/archive/2013/04/08/3006577.html . #import <Foundation/Foundation.h&g ...
- codeforces#1234F. Yet Another Substring Reverse(子集dp)
题目链接: https://codeforces.com/contest/1234/problem/F 题意: 给出一个只包含前20个小写字母的字符串,一次操作可以让一段字符颠倒顺序 最多一次这样的操 ...
- java实现磁盘先来先服务算法
package demo; import java.awt.List; import java.util.ArrayList; import java.util.Arrays; public clas ...
- NMS(非极大值抑制)实现
1.IOU计算 设两个边界框分别为A,B.A的坐标为Ax1,Ax2,Ay1,Ay2,且Ax1 < Ax2,Ay1 < Ay2.B和A类似. 则IOU为A∩B除以A∪B. 当两个边界框有重叠 ...
- DELPHI安卓定位权限申请
DELPHI安卓定位权限申请 安卓8及以后版本的权限分为静态和动态申请2部分,而之前的安卓版本只需要静态申请权限. 1)静态申请定位权限: 2)动态申请定位权限: uses System.Permis ...
- unigui图形验证码
unigui图形验证码 procedure TMainForm.UniButton1Click(Sender: TObject); var url: SockString; serial: TynSe ...
- office很抱歉遇到一些临时服务器问题
office2016登录很抱歉遇到一些临时服务器问题 主要问题:word不能进行发博客了.一直以为是cnblog服务器不稳定,今天才发现,word不能登录也就是不能联网. 查了原因,才知道是代理造 ...
- mfc判断当前程序是否正在运行
HANDLE hMutex = CreateMutex(NULL,TRUE,_T("appName")); if(hMutex) { if(ERROR_ALREADY_EXISTS ...
- 使用 mencoder 制作幻灯片
首先安装相关依赖: sudo apt-get install mencoder sudo apt-get install imagemagick 编辑 test.sh 脚本如下: #!/bin/bas ...