noi.ac #528 神树和排列
题目链接:戳我
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;
#define MAXN 8010
#define mod 1000000007
#define ll long long
int n,m,a[MAXN],flag[MAXN],cnt[MAXN],f[2][MAXN],sum[MAXN];
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
#endif
scanf("%d%d",&n,&m);
for(int i=1;i<=m;++i)
{
int x,y;
scanf("%d%d",&x,&y);
if(a[x]){puts("0");return 0;}
if(flag[y]){puts("0");return 0;}
if(y==n&&x!=n){puts("0");return 0;}
if(x==n&&y!=n){puts("0");return 0;}
a[x]=y;flag[y]=1;//a[x]=y表示位置x预定的是y
}
//f[i][j]表示统计到前i位,其中最大的是j的方案数
//根据题目中的排序规则,最大的一定在最右边
for(int i=1;i<=n;++i) cnt[i]=cnt[i-1]+flag[i];
f[0][0]=1;
for(int i=0;i<=n;++i) sum[i]=1;
for(int i=1;i<=n;++i)
{
int now=i&1,pre=now^1;
memset(f[now],0,sizeof(f[now]));
//j一定在第i位
for(int j=i;j<=n;++j)
{
if(!a[i-1])//i-1的位置没有被预定
{
f[now][j]=((f[now][j]+1ll*f[pre][j]*(j-(i-1)-cnt[j-1])%mod)%mod+sum[j-1])%mod;
//乘上的系数是该位可以放哪些值
}
else if(j>a[i-1])//如果i-1的位置被预定了,且j大于i-1位置预定的值
f[now][j]=(f[pre][j]+f[pre][a[i-1]])%mod;
}
sum[i-1]=0;
for(int j=i;j<=n;++j) sum[j]=(sum[j-1]+(flag[j]?0:f[now][j]))%mod;
//sum[j]表示以1...j为最大的值的前缀和
//如果这个位置被预定了,那么就是0,如果没有,就加上这一位的值
if(a[i])//如果这个位置被预定了
{
flag[a[i]]=0;//a[i]这个数没有预定了,以消除后面统计前缀和的影响
for(int j=a[i];j<=n;++j) --cnt[j];//cnt[j]表示前j大的数已经被放了几个了,同上
}
}
printf("%d\n",f[n&1][n]);
return 0;
}
noi.ac #528 神树和排列的更多相关文章
- noi.ac #531 神树和物品
题目链接:戳我 决策单调性 (蒟蒻终于会写决策单调性啦!考试全场切这题就我不会啊嘤) (证明?不会啊,自己打表看QAQ) 44pts \(O(n^2)\)代码: #include<iostrea ...
- noi.ac #529 神树的矩阵
题目链接:戳我 当 \(max(n, m) \ge 3\) 时,可以如下构造: 考虑下面这样三个矩阵,红 + 蓝 − 绿得到的矩阵是一个第一行和最后一行全是 1,其他地方全是 0 的矩阵. 那么如果需 ...
- noi.ac #525 神树的权值
mcfx神仙的题qwq 题目链接:戳我 首先,我们知道30%的分还是挺好做的 直接枚举根,然后dfs一遍以\(O(n)\)的时间复杂度求出来有多少神仙点 代码如下: #include<iostr ...
- NOI.ac #31 MST DP、哈希
题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...
- NOI.AC 31 MST——整数划分相关的图论(生成树、哈希)
题目:http://noi.ac/problem/31 模拟 kruscal 的建最小生成树的过程,我们应该把树边一条一条加进去:在加下一条之前先把权值在这一条到下一条的之间的那些边都连上.连的时候要 ...
- # NOI.AC省选赛 第五场T1 子集,与&最大值
NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...
- NOI.AC NOIP模拟赛 第五场 游记
NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...
- NOI.AC NOIP模拟赛 第六场 游记
NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...
- NOI.AC NOIP模拟赛 第二场 补记
NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...
随机推荐
- Linux7_MySQL5.7_主从复制_scripts
# cat my_full_backup.sh #!/bin/bash BEGINTIME=`date +"%Y-%m-%d %H:%M:%S"` format_time=`dat ...
- JavaScript - 过滤敏感字符
目录 before 源码示例 before 本篇博客展示了如何是在前端对铭感字符及一些特殊的命令做过滤. 好处是,少发一次请求,减少服器校验压力. 源码示例 <!DOCTYPE html> ...
- python函数篇0-1
创建类和对象 面向对象编程是一种编程方式,此编程方式的落地需要使用 “类” 和 “对象” 来实现,所以,面向对象编程其实就是对 “类” 和 “对象” 的使用. 类就是一个模板,模板里可以包含多个函数, ...
- 怎样重置MySQL密码?
systemctl stop mysqld systemctl set-environment MYSQLD_OPTS="--skip-grant-tables" systemct ...
- dev gridview表格按钮
固定列的位置 添加按钮控件位置,使用buttonEdit 添加按钮 按钮属性设置 按钮设置后的效果 //注册按钮事件 this.ribtndata.ButtonClick += new DevExpr ...
- Mongodb安装后在任务管理器中找不到这个服务
今天安装mongodb,但是一开始在任务管理器中找不到这个服务,后来查询得知:稍微高一些的系统是需要通过管理员身份运行cmd命令行安装的. orz,找了好久才知道是这个问题. 2333 在任务管理的服 ...
- MySQL授权远程用户登录权限
1 举例子,建数据库,然后 赋予用户远程访问的所有权限,最后刷新权限 create database cmf DEFAULT CHARACTER SET utf8; grant all on cmf. ...
- 基于MYCAT中间件实现MYSQL读写分离
基于mycat实现mysql读写分离 完成主从复制的配置 /* 主节点:192.168.47.101 从节点:192.168.47.102 */ /*mycat为同一网段客户端*/ /* 修改主节点基 ...
- 【C/C++】内存对齐规则和实战
内存对齐规则和实战 这篇文章是我的平时的一个笔记修改后来的.这里主要介绍一下内存对齐的规则,以及提供一些实战一下.几篇我觉得比较好的详细的介绍内存对齐的作用什么的博文会在文末附上. 规则 在开始实战前 ...
- 打成jar包运行,依然可以找到指定路径的xml
今天遇到一个问题,解决了就想着记下来 无效: getClass().getClassLoader().getResource("ehcache.xml").getPath() 有效 ...