luogu 5505 [JSOI2011]分特产 广义容斥
共有 $m$ 种物品,每个物品 $a[i]$ 个,分给 $n$ 个人,每个人至少要拿到一件,求方案数.
令 $f[i]$ 表示钦定 $i$ 个没分到特产,其余 $(n-i)$ 个人随便选的方案数,$g[i]$ 表示恰好 $i$ 个没分到特产的方案数.
按照我们之前讲的,有 $f[k]=\sum_{i=k}^{n}\binom{k}{i}g[i]\Rightarrow g[k]=\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{k}f[i]$
而根据定义,$f[i]=\binom{n}{i}\times \prod_{j=1}^{m}\binom{a[j]+n-i-1}{n-i-1}$
所以先预处理 $f[i]$,然后求 $g[0]$ 就好了(恰好 $0$ 个人没分到特产的方案数)
code:
#include <bits/stdc++.h>
#define N 10005
#define LL long long
using namespace std;
const LL mod=1000000007;
void setIO(string s)
{
string in=s+".in";
string out=s+".out";
freopen(in.c_str(),"r",stdin);
}
int a[N];
LL fac[N],inv[N],f[N],g[N];
LL qpow(LL x,LL y)
{
LL tmp=1ll;
for(;y;y>>=1,x=x*x%mod)
if(y&1) tmp=tmp*x%mod;
return tmp;
}
LL Inv(LL x) { return qpow(x,mod-2); }
LL C(int x,int y)
{
return fac[x]*inv[y]%mod*inv[x-y]%mod;
}
int main()
{
// setIO("input");
int i,j,n,m;
fac[0]=inv[0]=1ll;
for(i=1;i<N;++i) fac[i]=fac[i-1]*1ll*i%mod,inv[i]=Inv(fac[i]);
scanf("%d%d",&n,&m);
for(i=1;i<=m;++i) scanf("%d",&a[i]);
for(i=0;i<=n;++i)
{
f[i]=C(n,i);
for(j=1;j<=m;++j) (f[i]=f[i]*C(a[j]+n-i-1,n-i-1)%mod)%=mod;
}
for(i=0;i<=n;++i)
{
(g[0]+=qpow(-1,i)*f[i]%mod+mod)%=mod;
}
printf("%lld\n",g[0]);
return 0;
}
luogu 5505 [JSOI2011]分特产 广义容斥的更多相关文章
- 【BZOJ4710】[JSOI2011]分特产(容斥)
[BZOJ4710]分特产(容斥) 题面 BZOJ 题解 比较简单吧... 设\(f[i]\)表示至多有\(i\)个人拿到东西的方案数. \(f[i]=\prod_{j=1}^m C_{m+i-1}^ ...
- bzoj4710: [Jsoi2011]分特产 组合+容斥
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 289 Solved: 198[Submit][Status] ...
- 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥
[BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...
- bzoj4710 [Jsoi2011]分特产(容斥)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 814 Solved: 527[Submit][Status] ...
- BZOJ 4710: [Jsoi2011]分特产 [容斥原理]
4710: [Jsoi2011]分特产 题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数 对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来 容斥容斥 \[ 每个同学至少 ...
- 【BZOJ 4710】 4710: [Jsoi2011]分特产 (容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 99 Solved: 65 Description JYY 带 ...
- [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 395 Solved: 262[Submit][Status] ...
- BZOJ 4710 [Jsoi2011]分特产 解题报告
4710 [Jsoi2011]分特产 题意 给定\(n\)个集合,每个集合有相同的\(a_i\)个元素,不同的集合的元素不同.将所有的元素分给\(m\)个不同位置,要求每个位置至少有一个元素,求分配方 ...
- 题解-JSOI2011 分特产
题面 JSOI2011 分特产 有 \(n\) 个不同的盒子和 \(m\) 种不同的球,第 \(i\) 种球有 \(a_i\) 个,用光所有球,求使每个盒子不空的方案数. 数据范围:\(1\le n, ...
随机推荐
- WUSTOJ 1313: 数列(Java)进制转换
题目链接:
- HttpClient 远程接口调用方式
远程接口调用方式HttpClient 问题:现在我们已经开发好了接口了,那该如何调用这个接口呢? 答:使用Httpclient客户端. Httpclient简介 什么是httpclient Htt ...
- java.lang.AbstractMethodError: null
在使用springcloud的时候运行报这个错,原因是版本冲突导致的,在idea中创建springcloud项目的时候,这里默认是${spring-cloud.version},但是如果你使用的是高版 ...
- 使用File类、StreamRead和StreamWrite读写数据、以及Path类操作文件路径和Directory
1.File类的概念: File类,是一个静态类,主要是来提供一些函数库用的.静态实用类,提供了很多静态的方法,支持对文件的基本操作,包括创建,拷贝,移动,删除和 打开一个文件. File类方法的参量 ...
- C# 用Redis实现的分布式锁
Redis实现分布式锁(悲观锁/乐观锁) 对锁的概念和应用场景在此就不阐述了,网上搜索有很多解释,只是我搜索到的使用C#利用Redis的SetNX命令实现的锁虽然能用,但是都不太适合我需要的场景. 基 ...
- Python3标准库使用样例
原:https://doughellmann.com/blog/the-python-3-standard-library-by-example/the-python-3-standard-libra ...
- git bash push 本地的commit到远程 -- ssh keys设置
1. 检查是否已经创建 ssh keys git bash 下,cd ~/.ssh 如何出现“No such file or directory”,则表示需要创建一个ssh keys. 2. 创建新 ...
- Node.js 实战(一)之—防灾备措施
前言 博客系统上线已经3个多月了,中间没有出现过宕机事故,一直稳定运行.自己写的代码还是挺严谨的,小小鼓励一下!上周对云服务器进行了一次内存扩容,扩容后重启了一次服务器.虽然过程很短,但是因重启后导致 ...
- js入门之内置对象Date
一. Date对象 Math和Date对象的区别 Math对象和Date对象的区别 Math不是一个构造函数,里面提供的是静态成员 Date是一个构造函数 首先要通过new Date() 来创建日期实 ...
- JavaScript CryptoJS库 加密与解密
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...