共有 $m$ 种物品,每个物品 $a[i]$ 个,分给 $n$ 个人,每个人至少要拿到一件,求方案数.

令 $f[i]$ 表示钦定 $i$ 个没分到特产,其余 $(n-i)$ 个人随便选的方案数,$g[i]$ 表示恰好 $i$ 个没分到特产的方案数.

按照我们之前讲的,有 $f[k]=\sum_{i=k}^{n}\binom{k}{i}g[i]\Rightarrow g[k]=\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{k}f[i]$

而根据定义,$f[i]=\binom{n}{i}\times \prod_{j=1}^{m}\binom{a[j]+n-i-1}{n-i-1}$

所以先预处理 $f[i]$,然后求 $g[0]$ 就好了(恰好 $0$ 个人没分到特产的方案数)

code:

#include <bits/stdc++.h>
#define N 10005
#define LL long long
using namespace std;
const LL mod=1000000007;
void setIO(string s)
{
string in=s+".in";
string out=s+".out";
freopen(in.c_str(),"r",stdin);
}
int a[N];
LL fac[N],inv[N],f[N],g[N];
LL qpow(LL x,LL y)
{
LL tmp=1ll;
for(;y;y>>=1,x=x*x%mod)
if(y&1) tmp=tmp*x%mod;
return tmp;
}
LL Inv(LL x) { return qpow(x,mod-2); }
LL C(int x,int y)
{
return fac[x]*inv[y]%mod*inv[x-y]%mod;
}
int main()
{
// setIO("input");
int i,j,n,m;
fac[0]=inv[0]=1ll;
for(i=1;i<N;++i) fac[i]=fac[i-1]*1ll*i%mod,inv[i]=Inv(fac[i]);
scanf("%d%d",&n,&m);
for(i=1;i<=m;++i) scanf("%d",&a[i]);
for(i=0;i<=n;++i)
{
f[i]=C(n,i);
for(j=1;j<=m;++j) (f[i]=f[i]*C(a[j]+n-i-1,n-i-1)%mod)%=mod;
}
for(i=0;i<=n;++i)
{
(g[0]+=qpow(-1,i)*f[i]%mod+mod)%=mod;
}
printf("%lld\n",g[0]);
return 0;
}

  

luogu 5505 [JSOI2011]分特产 广义容斥的更多相关文章

  1. 【BZOJ4710】[JSOI2011]分特产(容斥)

    [BZOJ4710]分特产(容斥) 题面 BZOJ 题解 比较简单吧... 设\(f[i]\)表示至多有\(i\)个人拿到东西的方案数. \(f[i]=\prod_{j=1}^m C_{m+i-1}^ ...

  2. bzoj4710: [Jsoi2011]分特产 组合+容斥

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 289  Solved: 198[Submit][Status] ...

  3. 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥

    [BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...

  4. bzoj4710 [Jsoi2011]分特产(容斥)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 814  Solved: 527[Submit][Status] ...

  5. BZOJ 4710: [Jsoi2011]分特产 [容斥原理]

    4710: [Jsoi2011]分特产 题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数 对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来 容斥容斥 \[ 每个同学至少 ...

  6. 【BZOJ 4710】 4710: [Jsoi2011]分特产 (容斥原理)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 99  Solved: 65 Description JYY 带 ...

  7. [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 395  Solved: 262[Submit][Status] ...

  8. BZOJ 4710 [Jsoi2011]分特产 解题报告

    4710 [Jsoi2011]分特产 题意 给定\(n\)个集合,每个集合有相同的\(a_i\)个元素,不同的集合的元素不同.将所有的元素分给\(m\)个不同位置,要求每个位置至少有一个元素,求分配方 ...

  9. 题解-JSOI2011 分特产

    题面 JSOI2011 分特产 有 \(n\) 个不同的盒子和 \(m\) 种不同的球,第 \(i\) 种球有 \(a_i\) 个,用光所有球,求使每个盒子不空的方案数. 数据范围:\(1\le n, ...

随机推荐

  1. JS实现可用滑块滑动的缓动图

    尝试模仿京东的"发现好货"模块的可用滑块滑动的缓动图 JS代码 function $(id) { return document.getElementById(id); } //缓 ...

  2. C++ new/delete详解及原理

    学了冯诺依曼体系结构,我们知道: 硬件决定软件行为,数据都是围绕内存流动的. 可想而知,内存是多么重要.当然,我们这里说的内存是虚拟内存(详情看Linxu壹之型). 1.C/C++内存布局 2.C语言 ...

  3. PowerBuilder学习笔记之导入Excel数据

    原文地址:http://blog.chinaunix.net/uid-20586802-id-3235549.html /*****************简单的导入功能,涉及到数据类型判断***** ...

  4. 用chattr命令防止系统中某个关键文件被修改

    用chattr命令防止系统中某个关键文件被修改:# chattr +i /etc/resolv.conf

  5. 腾讯域名使用百度CDN加速配置

    1.百度CDN资源包购买 购买地址 https://console.bce.baidu.com/cdn/#/cdn/package/create 我比较穷所以买的是18块100G的资源包. 2.添加域 ...

  6. webstrom设置语句中的分号

    webstrom可以设置语句默认是否添加分号 setting >editor > Code Style > Javascript

  7. 【转载】C#使用as关键字将对象转换为指定类型

    在C#的编程开发过程中,很多时候涉及到数据类型的转换,可使用强制转换的方式,不过强制转换数据类型有时候会抛出程序异常错误,可以使用as关键字来进行类型的转换,如果转换成功将返回转换后的对象,如果转换不 ...

  8. 如何去把内容分享到whatsapp上?

    使用场景,公司利用whatsapp来推广商品,需要把商品和一些基本信息分享到WhatsApp上; 一:在html的head标签里面通过meta标签加上一些分享的基本网站信息,具体代码如下 <me ...

  9. lwm2m协议

    开源代码:wakaama 1. LWM2M for IoT LWM2M(Light Weight Machine-to-Machine)轻量型的通信协议 IoT(Internet of Things) ...

  10. sql server 游标和with as使用

    ) --声明变量,需要读取的数据 DECLARE cur CURSOR --去掉STATIC关键字即可 FOR WITH Emp AS (SELECT acc.* FROM GXSpreadDB.db ...