题目描述 Description

给定N(小于等于8)个点的地图,以及地图上各点的相邻关系,请输出用4种颜色将地图涂色的所有方案数(要求相邻两点不能涂成相同的颜色)

数据中0代表不相邻,1代表相邻

输入描述 Input Description

第一行一个整数n,代表地图上有n个点

接下来n行,每行n个整数,每个整数是0或者1。第i行第j列的值代表了第i个点和第j个点之间是相邻的还是不相邻,相邻就是1,不相邻就是0.

我们保证a[i][j] = a[j][i] (a[i,j] = a[j,i])

输出描述 Output Description

染色的方案数

样例输入 Sample Input

8
0 0 0 1 0 0 1 0 
0 0 0 0 0 1 0 1 
0 0 0 0 0 0 1 0 
1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
1 0 1 0 0 0 0 0 
0 1 0 0 0 0 0 0

样例输出 Sample
Output

15552

数据范围及提示 Data
Size & Hint

n<=8

var a:array[..,..]of longint;
color:array[..]of longint;
n,m,i1,j1:longint;
sum:longint=;
{function p(w:longint):boolean;
var i:longint=1;
begin
p:=true;
while((i<w)and(color[w]*a[i,w]<>color[i])) do i:=i+1;
if w>=n then exit(false);
end;}
procedure sise(x:longint);
var i,j:longint;
b:boolean;
begin
if x>n then
begin
inc(sum);
exit;
{必须要退出否则无法进入下一个循环}
end;
for i:= to do
begin
b:=true;
for j:= to do
if (a[j,x]=)and(color[j]=i) then b:=false;
if ((x<=n)and b) then
begin
color[x]:=i;
sise(x+);
end;
color[x]:=;
end;
end;
begin
fillchar(color,sizeof(color),);
read(n);
for i1:= to n do
for j1:= to n do
read(a[i1,j1]);
sise();
writeln(sum);
end.

[CODEVS1116]四色问题的更多相关文章

  1. 【wikioi】1116 四色问题

    题目链接 算法:DFS 刚开始卡了一下,但后面想了想,于是 放上代码: #include <iostream> using namespace std; bool map[9][9]; i ...

  2. [wikioi]四色问题

    http://wikioi.com/problem/1116/ 典型的DFS. #include <iostream> #include <memory.h> #define ...

  3. 一些对数学领域及数学研究的个人看法(转载自博士论坛wcboy)

    转自:http://www.math.org.cn/forum.php?mod=viewthread&tid=14819&extra=&page=1 原作者: wcboy 现在 ...

  4. 备战NOIP每周写题记录(一)···不间断更新

    ※Recorded By ksq2013 //其实这段时间写的题远远大于这篇博文中的内容,只不过那些数以百记的基础题目实在没必要写在blog上; ※week one 2016.7.18 Monday ...

  5. 图的M着色问题

    问题描述: 给定无向连通图 G 和 m 种不同的颜色.用这些颜色为图 G 和各顶点着色,每个顶点着一种颜色.是否有一种着色法使得图 G 中每条边的两个顶点着不同的颜色.这个问题是图的 m 可着色判定问 ...

  6. python数据结构与算法之问题求解实例

    关于问题求解,书中有一个实际的案例. 上图是一个交叉路口的模型,现在问题是,怎么安排红绿灯才可以保证相应的行驶路线互不交错. 第一步,就是把问题弄清楚. 怎么能让每一条行驶路线不冲突呢? 其实,就是给 ...

  7. 什么是数学 (R·柯朗 H·罗宾 著)

    第1章 自然数 引言 $1 整数的计算 1. 算术的规律 2. 整数的表示 3. 非十进位制中的计算 $2 数学的无限性 数学归纳法 1. 数学归纳法原理 2. 等差级数 3. 等比级数 4. 前n项 ...

  8. [NOIP 2014复习]第二章:搜索

    一.深度优先搜索(DFS) 1.Wikioi 1066引水入城 题目描写叙述 Description 在一个遥远的国度,一側是风景秀美的湖泊,还有一側则是漫无边际的沙漠.该国的行政 区划十分特殊,刚好 ...

  9. 算法训练 Pollution Solution(计算几何)

    问题描述 作为水污染管理部门的一名雇员,你需要监控那些被有意无意倒入河流.湖泊和海洋的污染物.你的其中一项工作就是估计污染物对不同的水生态系统(珊瑚礁.产卵地等等)造成的影响. 你计算所使用的模型已经 ...

随机推荐

  1. if (!floor) 小明.跳楼(); 请问小明会在哪些楼层跳楼?

    博客已经迁移到www.imyzf.com,本站不再更新,请谅解! 看到标题请先思考一下这个奇葩的问题..答案在文章最后揭晓.. 会出现这个问题的起源是这样的,一个同学问我: int main() { ...

  2. csv转json文件

    今天因为需要帮一个同事的新闻内容录入为html, 每次手改不方便,所以就弄了个csv(excel)转json的c++程序,然后再利用ejs把它渲染成网页,打开渲染好的网页再保存(不能保存源文件,不然还 ...

  3. MongoDB 配置文件启动

    MongoDB 服务启动有两种方式:一种是直接命令启动,一种是通过配置文件启动 1.命令启动: mongod -dbpath C:\data\db -logpath C:\data\log\mongo ...

  4. JAVA入门第二季(mooc-笔记)

    相关信息 /** * @subject <学习与创业>作业1 * @author 信管1142班 201411671210 赖俊杰 * @className <JAVA入门第二季&g ...

  5. JDBC之PreparedStatement模糊查询

    今天要做一个关于模糊查询的需求,以前用JDBC做精确查询都是用 "SELECT * FROM test WHERE id = ?",所以用模糊查询时理所当然的也用了"SE ...

  6. skip-grant-tables:非常有用的mysql启动参数

    skip-grant-tables:非常有用的mysql启动参数   介绍一个非常有用的mysql启动参数—— --skip-grant-tables.顾名思义,就是在启动mysql时不启动grant ...

  7. 纯CSS3代码实现表格奇偶行异色,鼠标悬浮变色

    1.首先会用到<tr></tr>元素两个伪类,nth-child()和hover. 然后需要注意的是伪类都是通过冒号引用的,不是点号,即tr:hover{} 其次,CSS代码中 ...

  8. apt-get用法

    转自apt-get语法- - 对于debian来说,安装软件大多都是通过apt-get来实现的. 1.apt-get update 更新软件包信息库.在Debian中,软件包是通过一个数据库来管理的, ...

  9. Codeforces Burning Midnight Oil

    /* * BurningMidnightOil.cpp * * Created on: 2013-10-12 * Author: wangzhu */ /** * 每次至少写多少行代码ret: * 1 ...

  10. 使用NSURLSession获取网络数据和下载文件

    使用NSURLSession获取网络数据 使用NSURLSession下载文件