很好的一道题。题意是,一个正方形围墙内有一些交错的内墙,内墙的端点都在正方形上,在正方形内部有一个点,求从正方形外到这个点的最少要走的门数,门只能是线段的中点。

思路很巧妙,因为从一个点到终点不可能“绕过”围墙,只能传过去,所以门是否开在中点是无所谓的,只要求四周线段中点到终点的线段与墙的最少交点个数即可。更进一步,实际上,只需判断四周围墙的所有点与终点的连线与内墙的最少交点加一即可。

请看下图的红色线,与蓝色线交点,即是上述的交点。


#include <iostream>
#include <math.h> #define eps 1e-8
#define zero(x) (((x)>0?(x):-(x))<eps) #define pi acos(-1.0) struct point
{
double x, y;
}; struct line
{
point a, b;
}; //计算cross product (P1-P0)x(P2-P0)
double xmult(point p1, point p2, point p0)
{
return (p1.x - p0.x)*(p2.y - p0.y) - (p2.x - p0.x)*(p1.y - p0.y);
}
//计算dot product (P1-P0).(P2-P0)
double dmult(point p1, point p2, point p0)
{
return (p1.x - p0.x)*(p2.x - p0.x) + (p1.y - p0.y)*(p2.y - p0.y);
} //两点距离
double distance(point p1, point p2)
{
return sqrt((p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y));
} //判三点共线
bool dots_inline(point p1, point p2, point p3)
{
return zero(xmult(p1, p2, p3));
} //判点是否在线段上,包括端点
bool dot_online_in(point p, line l)
{
return zero(xmult(p, l.a, l.b)) && (l.a.x - p.x)*(l.b.x - p.x) < eps && (l.a.y - p.y)*(l.b.y - p.y) < eps;
} //判点是否在线段上,不包括端点
bool dot_online_ex(point p, line l)
{
return dot_online_in(p, l) && (!zero(p.x - l.a.x) || !zero(p.y - l.a.y)) && (!zero(p.x - l.b.x) || !zero(p.y - l.b.y));
} //判两点在线段同侧,点在线段上返回0
bool same_side(point p1, point p2, line l)
{
return xmult(l.a, p1, l.b)*xmult(l.a, p2, l.b) > eps;
} //判两点在线段异侧,点在线段上返回0
bool opposite_side(point p1, point p2, line l)
{
return xmult(l.a, p1, l.b)*xmult(l.a, p2, l.b) < -eps;
} //判两线段相交,包括端点和部分重合
bool intersect_in(line u, line v)
{
if (!dots_inline(u.a, u.b, v.a) || !dots_inline(u.a, u.b, v.b))
return !same_side(u.a, u.b, v) && !same_side(v.a, v.b, u);
return dot_online_in(u.a, v) || dot_online_in(u.b, v) || dot_online_in(v.a, u) || dot_online_in(v.b, u);
} //判两线段相交,不包括端点和部分重合
bool intersect_ex(line u, line v)
{
return opposite_side(u.a, u.b, v) && opposite_side(v.a, v.b, u);
} int main()
{
point p[100];
line wall[35], link[100];
int n;
while (std::cin >> n)
{
int j = 0;
for (int i = 0; i < n << 1; i++)//边界点
{
std::cin >> p[i].x >> p[i].y;
}
for (int i = 0; i < n << 1; i++)//构造墙
{
wall[j].a = p[i];
wall[j++].b = p[++i];
}
double x, y;
std::cin >> x >> y;
int k = 0;
for (int i = 0; i < n << 1; i++)//构造宝藏点到边界所有点的连线
{
link[k].a = p[i];
link[k].b.x = x, link[k++].b.y = y;
} //for (int i = 0; i < n; i++)
//{
// std::cout << wall[i].a.x << ' ' << wall[i].a.y << ' ' << wall[i].b.x << ' ' << wall[i].b.y << std::endl;
//} //for (int i = 0; i < n << 1; i++)
//{
// std::cout << link[i].a.x << ' ' << link[i].a.y << ' ' << link[i].b.x << ' ' << link[i].b.y << std::endl;
//} int min = 100000;
for (int i = 0; i < n << 1; i++)
{
int count = 0;
for (int j = 0; j < n; j++)
{
if (intersect_ex(link[i], wall[j]))
{
count++;
/*std::cout << link[i].a.x << '%' << link[i].a.y << '%' << link[i].b.x << '%' << link[i].b.y << std::endl;
std::cout << wall[j].a.x << '%' << wall[j].a.y << '%' << wall[j].b.x << '%' << wall[j].b.y << std::endl << std::endl;*/
}
}
//std::cout << count << std::endl;
if (count < min) min = count;
}
if (n == 0) std::cout << "Number of doors = 1" << std::endl;
else std::cout <<"Number of doors = "<< min + 1<< std::endl;
}
}

poj1066的更多相关文章

  1. poj1066 Jugs

    poj1066 Jugs http://poj.org/problem?id=1606 解题思路:本题可以用数学方法解得,最易理解,常规的解法是搜索.直接用接近模拟的广度优先搜索即可过. 给两个容器, ...

  2. POJ1066线段交点

    POJ1066 题意:给出一个100*100的正方形区域,通过若干连接区域边界的线段将正方形区域分割为多个不规则多边形小区域,然后给出宝藏位置,要求从区域外部开辟到宝藏所在位置的一条路径,使得开辟路径 ...

  3. poj1066(叉乘的简单应用)

    做完了才发现,好像没有人和我的做法一样的,不过我怎么都觉得我的做法还是挺容易想的. 我的做法是: 把周围的方框按顺时针编号,然后对于每一条边,如果点出现在边的一侧,则把另一侧所有的点加1,这样最后统计 ...

  4. 算法:poj1066 宝藏猎人问题。

    package practice; import java.util.Scanner; public class TreasureHunt { public static void main(Stri ...

  5. poj1066 Treasure Hunt【计算几何】

    Treasure Hunt Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8192   Accepted: 3376 Des ...

  6. 几何+线段交点+spfa(POJ1066)

    Treasure Hunt Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 20000/10000K (Java/Other) Total ...

  7. POJ1066 Treasure Hunt

    嘟嘟嘟 题意看题中的图就行:问你从给定的点出发最少需要穿过几条线段才能从正方形中出去(边界也算). 因为\(n\)很小,可以考虑比较暴力的做法.枚举在边界中的哪一个点离开的.也就是枚举四周的点\((x ...

  8. POJ1066:Treasure Hunt——题解

    http://poj.org/problem?id=1066 题目大意:给一个由墙围成的正方形,里面有若干墙,每次破墙只能从(当前看到的)墙的中点破,求最少破多少墙才能看到宝藏. —————————— ...

  9. poj1066 线段相交简单应用(解题报告)

    #include<stdio.h> #include<math.h> const double eps=1e-8; int n; struct Point { double x ...

随机推荐

  1. CoreProfiler/NanoProfiler

    使用CoreProfiler/NanoProfiler实现跨平台&应用的整合性能调试 摘要 NanoProfiler是一个开源.NET性能调试类库,CoreProfiler是其.NET Cor ...

  2. jq实现瀑布流效果

    <!doctype html><html><head><meta http-equiv="Content-Type" content=&q ...

  3. 利用jquery操作Radio方法小结

    用Radio来实现用户的选择效果,在项目中积累了一些利用JQUERY来操作Radio的方法,这里与大家分享下 在开发中经常会用到Radio来实现用户的选择效果,我在项目中积累了一些利用JQUERY来操 ...

  4. [BZOJ 1082] [SCOI2005] 栅栏 【二分 + DFS验证(有效剪枝)】

    题目链接:BZOJ - 1082 题目分析 二分 + DFS验证. 二分到一个 mid ,验证能否选 mid 个根木棍,显然要选最小的 mid 根. 使用 DFS 验证,因为贪心地想一下,要尽量先用提 ...

  5. java 上下文切换

    上下文概念 在高性能编程时,经常接触到多线程. 起初我们的理解是, 多个线程并行地执行总比单个线程要快, 就像多个人一起干活总比一个人干要快. 然而实际情况是, 多线程之间需要竞争IO设备, 或者竞争 ...

  6. Git 、CVS、SVN比较

    Git .CVS.SVN比较 项目源代码的版本管理工具中,比较常用的主要有:CVS.SVN.Git 和 Mercurial  (其中,关于SVN,请参见我先前的博客:SVN常用命令 和 SVN服务器配 ...

  7. rootkit的检测工具使用(chkrootkit和rootkit hunter)

      信息安全        这两天突然发现我们的服务器产生大量DNS解析连线.为了查明问题,就下载网上找工具检查问题所在.用了两个工具,一个chkrootkit,另外一个rootkit huntur. ...

  8. Nginx 代理 jira 和 confluence

    原文出处:http://blog.chenlb.com/2012/01/nginx-proxy-jira-and-confluence.html jira 和 confluence 想部署到同一台机器 ...

  9. ☀【HTML5】Modernizr

    Modernizr 使用Modernizr探测HTML5/CSS3新特性

  10. 【转】MFC中调试过程中查看输出信息 -- 不错

    原文网址:http://blog.sina.com.cn/s/blog_4e24d9c501014o39.html 笔记&&方便查阅. ~~~~~~~~~~~~~~~~~~~~~~~~ ...