额、、失误、、

LCS是Longest Common Subsequence的缩写,即最长公共子序列。一个序列,如果是两个或多个已知序列的子序列,且是所有子序列中最长的,则为最长公共子序列。

DP、O(n^2)解法:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define max(a,b) ((a)>(b)?(a):(b))
#define N 1010 int p,q;
int a[N];
int b[N];
int dp[N][N]; void solve()
{
int i,j;
memset(dp,,sizeof(dp));
for(i=;i<=p;i++)
{
for(j=;j<=q;j++)
{
if(a[i]==b[j])
{
dp[i][j]=dp[i-][j-]+;
}
else
{
dp[i][j]=max(dp[i-][j],dp[i][j-]);
}
}
}
cout<<dp[p][q]<<endl;
}
int main()
{
int i;
while(scanf("%d%d",&p,&q)!=EOF)
{
for(i=;i<=p;i++)
{
scanf("%d",&a[i]);
}
for(i=;i<=q;i++)
{
scanf("%d",&b[i]);
}
solve();
}
return ;
}

O(nlogn)解法:

参考http://www.cs.ucf.edu/courses/cap5937/fall2004/Longest%20common%20subsequence.pdf

最长公共子序列 的 nlogn 的算法本质是 将该问题转化成 最长增序列(LIS),因为 LIS 可以用nlogn实现,所以求LCS的时间复杂度降低为 nlogn。

转化:将LCS问题转化成LIS问题。

               假设有两个序列 s1[ 1~6 ] = { a, b, c , a, d, c }, s2[ 1~7 ] = { c, a, b, e, d, a, b }。

记录s1中每个元素在s2中出现的位置, 再将位置按降序排列, 则上面的例子可表示为:

loc( a)= { 6, 2 }, loc( b ) = { 7, 3 }, loc( c ) = { 1 }, loc( d ) = { 5 }。

将s1中每个元素的位置按s1中元素的顺序排列成一个序列s3 = { 6, 2, 7, 3, 1, 6, 2, 5, 1 }。

在对s3求LIS得到的值即为求LCS的答案。(这点我也只是大致理解,读者可以自己理解甚至证明。)

上面一段话转载自:http://blog.csdn.net/non_cease/article/details/6918848

1、当无重复元素时:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define N 1010 int len;
int p,q;
int a[N];
int b[N];
int dp[N]; void convert()
{
int i,hash[N]={};
for(i=;i<=p;i++)
{
hash[a[i]]=i;
}
for(i=;i<=q;i++)
{
b[i]=hash[b[i]];
}
}
int up_bound(int k)
{
int l=,r=len+;
while(l<r)
{
int m=(l+r)>>;
if(dp[m]<=k) l=m+;
else r=m;
}
return l;
}
void solve()
{
len=;
dp[]=-0x7ffffff;
for(int i=;i<=q;i++)
{
if(!b[i]) continue;
if(b[i]>dp[len]) dp[++len]=b[i];
else
{
int pos=up_bound(b[i]);
dp[pos]=b[i];
}
}
printf("%d\n",len);
}
int main()
{
while(scanf("%d%d",&p,&q)!=EOF)
{
for(int i=;i<=p;i++)
{
scanf("%d",&a[i]);
}
for(int i=;i<=q;i++)
{
scanf("%d",&b[i]);
}
convert();
solve();
}
return ;
}

2、当有重复元素时:

#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
using namespace std;
#define N 10010 int n;
int p,q;
int len;
int a[N];
int b[N];
int s[N];
int dp[N]; void convert()
{
vector<int> v[N];
for(int i=;i<=p;i++)
{
v[a[i]].push_back(i);
}
n=;
for(int i=;i<=q;i++)
{
for(int j=v[b[i]].size()-;j>=;j--)
{
s[++n]=v[b[i]][j];
}
}
}
int up_bound(int k)
{
int l=,r=len+;
while(l<r)
{
int m=(l+r)>>;
if(dp[m]<=k) l=m+;
else r=m;
}
return l;
} void solve()
{
len=;
dp[]=-0x7fffffff;
for(int i=;i<=n;i++)
{
if(s[i]>dp[len]) dp[++len]=s[i];
else
{
int pos=up_bound(s[i]-);
dp[pos]=s[i];
}
}
printf("%d\n",len);
}
int main()
{
while(scanf("%d%d",&p,&q)!=EOF)
{
for(int i=;i<=p;i++)
{
scanf("%d",&a[i]);
}
for(int i=;i<=q;i++)
{
scanf("%d",&b[i]);
}
convert();
solve();
}
return ;
}

[DP] LCS小结的更多相关文章

  1. UVA.10192 Vacation (DP LCS)

    UVA.10192 Vacation (DP LCS) 题意分析 某人要指定旅游路线,父母分别给出了一系列城市的旅游顺序,求满足父母建议的最大的城市数量是多少. 对于父母的建议分别作为2个子串,对其做 ...

  2. UVA.10066 The Twin Towers (DP LCS)

    UVA.10066 The Twin Towers (DP LCS) 题意分析 有2座塔,分别由不同长度的石块组成.现在要求移走一些石块,使得这2座塔的高度相同,求高度最大是多少. 问题的实质可以转化 ...

  3. UVA-1625-Color Length(DP LCS变形)

    Color Length(UVA-1625)(DP LCS变形) 题目大意 输入两个长度分别为n,m(<5000)的颜色序列.要求按顺序合成同一个序列,即每次可以把一个序列开头的颜色放到新序列的 ...

  4. 插头$DP$学习小结

    插头\(DP\)学习小结 这种辣鸡毒瘤东西也能叫算法... 很优秀的一个算法. 最基本的适用范围主要是数据范围极小的网格图路径计数问题. 如果是像\(Noi2018\)那种的话建议考生在其他两道题难度 ...

  5. UVA 11404 Palindromic Subsequence[DP LCS 打印]

    UVA - 11404 Palindromic Subsequence 题意:一个字符串,删去0个或多个字符,输出字典序最小且最长的回文字符串 不要求路径区间DP都可以做 然而要字典序最小 倒过来求L ...

  6. LightOJ1033 Generating Palindromes(区间DP/LCS)

    题目要计算一个字符串最少添加几个字符使其成为回文串. 一年多前,我LCS这道经典DP例题看得还一知半解时遇到一样的问题,http://acm.fafu.edu.cn/problem.php?id=10 ...

  7. poj 1159 (DP LCS)

    滚动数组 + LCS // File Name: 1159.cpp // Author: Missa_Chen // Created Time: 2013年07月08日 星期一 10时07分13秒 # ...

  8. poj1080--Human Gene Functions(dp:LCS变形)

    Human Gene Functions Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 17206   Accepted:  ...

  9. UVA 531 - Compromise(dp + LCS打印路径)

      Compromise  In a few months the European Currency Union will become a reality. However, to join th ...

随机推荐

  1. /etc/sysconfig/目录详解

    /etc/sysconfig/目录包括了在红帽企业LINUX下各种系统配置文件,以下是在/etc/sysconfig/目录下的文件列表如图: 500)this.width=500;"> ...

  2. jquery动态添加/删除 tr/td

    <head runat="server"> <title></title> <!--easyui --> <link rel= ...

  3. 关于arcgis 9.3破解问题详解

    对于初学GIS的同学,安装软件可能会遇到各种各样的问题,对于photoshop,autocad,sketchup,3dmax等软件我们的我们无非是输入特定序列号或者用工具随机生成特定序列号就可以破解, ...

  4. html表单 第四节

    实例: <html> <head> <title>表单实例</title> </head> <body> <center& ...

  5. 11_关于SqlMapperConfig.xml

    [简述] SqlMapConfig.xml是Mybatis的全局配置文件,配置内容如下: 1.properties---------属性 2.settings-----------全局配置参数 3.t ...

  6. C++中delete和delete[]的使用

    偶然的机会要使用到动态分配整形数组,怎么删除new出来的东西一时有点模糊(也许一直就不知道),于是在VS上试了试(写代码时经常用这种方法去验证模凌两可的东西),总结出来有两点. 1.基本数据类型new ...

  7. What are TCHAR, WCHAR, LPSTR, LPWSTR, LPCTSTR (etc.)?

    转自: http://www.codeproject.com/Articles/76252/What-are-TCHAR-WCHAR-LPSTR-LPWSTR-LPCTSTR-etc 解释的超详细!! ...

  8. ubuntu ssh安装

    参考 http://www.linuxidc.com/Linux/2010-02/24349.htm  文章很不错!! ssh   登录名@ip地址 , 如果提示验证key can't be esta ...

  9. 网站开发常用jQuery插件总结(15)上传插件blueimp

    在介绍这个插件之前,先吐槽一下.这个插件功能很强大.带有的功能有:上传(单个文件或批量文件),自动上传或点击按钮上传,上传前缩略图显示,判断文件格式,上传前的文件操作,上传时进度条显示等功能.如果你用 ...

  10. Laravel 5.1 事件、事件监听的简单应用

    ​ 有时候当我们单纯的看 Laravel 手册的时候会有一些疑惑,比如说系统服务下的授权和事件,这些功能服务的应用场景是什么,其实如果没有经历过一定的开发经验有这些疑惑是很正常的事情,但是当我们在工作 ...