题意:

舞会上,男孩和女孩配对,求最大完全匹配个数,要求每个人最多与k个不喜欢的人配对,且每次都和不同的人配对。

分析:

将一个点拆成3个点. b,  b1, b2.   从1到n枚举ans,  判可行流.   源点s到每个b连一容量为ans边, b->b1容量inf,   b->b2容量为k,    每个g到汇点连一容量为ans的边,  g->g1容量inf,   g->g2容量为k,  如果一个boy喜欢一个girl, 则连一条边b1->g1,  容量为1,    如果一个boy讨厌一个girl,  则b2->g2, 容量为1.

满足可行流条件:   最大流==ans*n.    (n为boy或者girl数)

// File Name: 1024.cpp
// Author: Zlbing
// Created Time: 2013/9/11 18:44:02 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdlib>
#include<cstdio>
#include<set>
#include<map>
#include<vector>
#include<cstring>
#include<stack>
#include<cmath>
#include<queue>
using namespace std;
#define CL(x,v); memset(x,v,sizeof(x));
#define INF 0x3f3f3f3f
#define LL long long
#define REP(i,r,n) for(int i=r;i<=n;i++)
#define RREP(i,n,r) for(int i=n;i>=r;i--)
const int MAXN=;
struct Edge{
int from,to,cap,flow;
Edge()
{
}
Edge(int from,int to,int cap,int flow):from(from),to(to),cap(cap),flow(flow)
{
}
};
bool cmp(const Edge& a,const Edge& b){
return a.from < b.from || (a.from == b.from && a.to < b.to);
}
struct Dinic{
int n,m,s,t;
vector<Edge> edges;
vector<int> G[MAXN];
bool vis[MAXN];
int d[MAXN];
int cur[MAXN];
void init(int n){
this->n=n;
for(int i=;i<=n;i++)G[i].clear();
edges.clear();
}
void AddEdge(int from,int to,int cap){
edges.push_back(Edge(from,to,cap,));
edges.push_back(Edge(to,from,,));//当是无向图时,反向边容量也是cap,有向边时,反向边容量是0
m=edges.size();
G[from].push_back(m-);
G[to].push_back(m-);
}
bool BFS(){
CL(vis,);
queue<int> Q;
Q.push(s);
d[s]=;
vis[s]=;
while(!Q.empty()){
int x=Q.front();
Q.pop();
for(int i=;i<(int)G[x].size();i++){
Edge& e=edges[G[x][i]];
if(!vis[e.to]&&e.cap>e.flow){
vis[e.to]=;
d[e.to]=d[x]+;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x,int a){
if(x==t||a==)return a;
int flow=,f;
for(int& i=cur[x];i<(int)G[x].size();i++){
Edge& e=edges[G[x][i]];
if(d[x]+==d[e.to]&&(f=DFS(e.to,min(a,e.cap-e.flow)))>){
e.flow+=f;
edges[G[x][i]^].flow-=f;
flow+=f;
a-=f;
if(a==)break;
}
}
return flow;
}
//当所求流量大于need时就退出,降低时间
int Maxflow(int s,int t,int need){
this->s=s;this->t=t;
int flow=;
while(BFS()){
CL(cur,);
flow+=DFS(s,INF);
if(flow>need)return flow;
}
return flow;
}
//最小割割边
vector<int> Mincut(){
BFS();
vector<int> ans;
for(int i=;i<edges.size();i++){
Edge& e=edges[i];
if(vis[e.from]&&!vis[e.to]&&e.cap>)ans.push_back(i);
}
return ans;
}
void Reduce(){
for(int i = ; i < edges.size(); i++) edges[i].cap -= edges[i].flow;
}
void ClearFlow(){
for(int i = ; i < edges.size(); i++) edges[i].flow = ;
}
};
int n,m,k;
int s,t;
Dinic solver;
int G[][];
bool solve(int x)
{
solver.init(t+);
REP(i,,n)
REP(j,,n)
{
if(G[i][j]==)
{
solver.AddEdge(*n+i,*n+j+n,);
//printf("%d %d cap=%d\n",2*n+i,2*n+j+n,1);
}
else
{
solver.AddEdge(*n*+i,*n*+n+j,);
//printf("%d %d cap=%d\n",2*n*2+i,2*n*2+j+n,1);
}
}
REP(i,,n)
{
solver.AddEdge(s,i,x);
//printf("%d %d cap=%d\n",s,i,x);
solver.AddEdge(i,*n+i,INF);
//printf("%d %d cap=%d\n",i,2*n+i,INF);
solver.AddEdge(i,*n*+i,k);
//printf("%d %d cap=%d\n",i,2*n*2+i,k);
}
REP(i,+n,n+n)
{
solver.AddEdge(i,t,x);
//printf("%d %d cap=%d\n",i,t,x);
solver.AddEdge(*n+i,i,INF);
//printf("%d %d cap=%d\n",2*n+i,i,INF);
solver.AddEdge(*n*+i,i,k);
//printf("%d %d cap=%d\n",2*n*2+i,i,k);
}
int ans=solver.Maxflow(s,t,INF);
if(ans>=n*x)
return true;
else return false;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&m,&k);
s=n**+;;
t=s+;
int a,b;
CL(G,);
REP(i,,m)
{
scanf("%d%d",&a,&b);
G[a][b]=;
}
int ans=;
for(int i=n;i>;i--)
{
//printf("Case %d:\n",i);
if(solve(i))
{
ans=i;
break;
}
}
printf("%d\n",ans);
}
return ;
}

hust-1024-dance party(最大流--枚举,可行流判断)的更多相关文章

  1. ZOJ2314 Reactor Cooling(无源汇流量有上下界网络的可行流)

    题目大概说一个核反应堆的冷却系统有n个结点,有m条单向的管子连接它们,管子内流量有上下界的要求,问能否使液体在整个系统中循环流动. 本质上就是求一个无源汇流量有上下界的容量网络的可行流,因为无源汇的容 ...

  2. ZOJ 2314 Reactor Cooling(无源汇有上下界可行流)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2314 题目大意: 给n个点,及m根pipe,每根pipe用来流躺 ...

  3. sgu 194 Reactor Cooling(有容量上下界的无源无汇可行流)

    [题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=20757 [题意] 求有容量上下界的无源无汇可行流. [思路] ...

  4. hdu 4940 Destroy Transportation system( 无源汇上下界网络流的可行流推断 )

    题意:有n个点和m条有向边构成的网络.每条边有两个花费: d:毁坏这条边的花费 b:重建一条双向边的花费 寻找这样两个点集,使得点集s到点集t满足 毁坏全部S到T的路径的费用和 > 毁坏全部T到 ...

  5. [Ahoi2014]支线剧情[无源汇有下界最小费用可行流]

    3876: [Ahoi2014]支线剧情 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1538  Solved: 940[Submit][Statu ...

  6. loj#115. 无源汇有上下界可行流

    \(\color{#0066ff}{ 题目描述 }\) 这是一道模板题. \(n\) 个点,\(m\) 条边,每条边 \(e\) 有一个流量下界 \(\text{lower}(e)\) 和流量上界 \ ...

  7. bzoj 2406 矩阵 —— 有源汇上下界可行流

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2406 这题,首先把题目那个式子的绝对值拆成两个限制,就成了网络流的上下界: 有上下界可行流原 ...

  8. 【HDU 4940】Destroy Transportation system(无源无汇带上下界可行流)

    Description Tom is a commander, his task is destroying his enemy’s transportation system. Let’s repr ...

  9. POJ2396 Budget(有源汇流量有上下界网络的可行流)

    题目大概给一个有n×m个单元的矩阵,各单元是一个非负整数,已知其每行每列所有单元的和,还有几个约束条件描述一些单元是大于小于还是等于某个数,问矩阵可以是怎样的. 经典的流量有上下界网络流问题. 把行. ...

随机推荐

  1. abc - zx

    诛仙青云志 第26集    第25集 第24集    第23集    第22集   第21集    第20集    第19集  第18集    第17集    第16集   第15集     第14集 ...

  2. 11.1 morning

    完美的序列(sequence)Time Limit:1000ms Memory Limit:64MB题目描述LYK 认为一个完美的序列要满足这样的条件:对于任意两个位置上的数都不相同.然而并不是所有的 ...

  3. C# 内存管理优化畅想(一)---- 大对象堆(LOH)的压缩

    我们都知道,.net的GC是不会压缩大对象堆的,因为其时间开销不可接受,但这是以大对象堆产生大块碎片为代价的,如果以后要分配的大对象比最大的碎片还大,那么即使它比所有碎片的总大小要小,也是无法在不扩展 ...

  4. U3D 内置对象

    在U3D里面提供了一个Time对象: void OnGUI(){ Debug.Log("########################"); GUILayout.Label (& ...

  5. SQLite 入门教程(三)好多约束 Constraints

    一.约束 Constraints 在上一篇随笔的结尾,我提到了约束, 但是在那里我把它翻译成了限定符,不太准确,这里先更正一下,应该翻译成约束更贴切一点. 那么什么是约束呢? 我们在数据库中存储数据的 ...

  6. 最终版-perl工具解析数据库的报告文件0120

    ********************需要根据自己的实际环境修改哦**************************** ******************** 1. 收集awr报告样本   a ...

  7. 谈谈oracle中的临时表

    --------------------创建临时表 临时保存从xml字符串解析来的数据--------------------------- 会话级别临时表SQL> create global ...

  8. javascript——处理(获取)浏览器版本、操作系统

    javascript——处理(获取)浏览器版本.操作系统 /** * Created by Administrator on 15-1-12. */ function BroswerUtil() { ...

  9. mysql基础操作整理(一)

    显示当前数据库 mysql> select database(); +------------+ | database() | +------------+ | test | +-------- ...

  10. websocket以及自定义协议编程一些总结

    以下仅供自己翻阅,因为时间久了会忘2.发送缓冲区主要是为了处理发送前一些小内容,可以自己控制flush,或者write的不是那么频繁因为没必要.至于大内容就没必要了.3.其实tcp以上的通信协议也好, ...