NYOJ-1070诡异的电梯【Ⅰ】
这道题是个dp,主要考虑两种情况,刚开始我把状态转移方程写成了dp[i] = min(dp[i-1] + a, dp[i + 1] +b); 后来想想当推到dp[i]的时候,那个dp[i + 1]还没有推出来,所以这种方式推导出来不对,后来又看到dp[i] = min(dp[i-2]的所有情况最小值,dp[i-3]的所有情况值),其中dp[i]表示前 i 层的最小花费总和, dp[i-2]比较好理解,因为不能连着停,所以最近的那个就是dp[i - 2], dp[i - 3]意思就是停在dp[i - 2]的下一层的时候,这两种就是所有的情况了,其中dp[i-3]的时候情况稍多谢,主要中间隔了两层
dp[i - 3]时:
1. dp[i-2]和dp[i-1]层都向上或者都向下走
2. dp[i-2]向下走,dp[i-1]层 向上走
3.dp[i-2]向上走,dp[i-1]向上走
取他们当中最小的情况就是答案,代码如下:
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int dp[];
int flo[];//保存各个楼层有多少人需要停
int main()
{
int kase = ;
int T;
scanf("%d", &T);
while (T--)
{
memset(dp, , sizeof(dp));
memset(flo, , sizeof(flo));
int n, m, a, b;
scanf("%d %d %d %d", &n, &m, &a, &b);
for (int i = ; i < m; i++)
{
int t;
scanf("%d", &t);
flo[t]++;
}
int minn;
for (int i = ; i <= n; i++)
{
//dp[i-2]中的情况,中间那一层向下或者向上,取最小
minn = min(flo[i - ] * a, flo[i - ] * b) + dp[i - ];
//dp[i-3]中情况,两个都向上走或者两个都向下走
int t1 = min(flo[i - ] * a + flo[i - ] * a, flo[i - ] * b + flo[i - ] * b);
//dp[i-3]中的情况,上面的向上走,下面的向下走和下面的向上走,上面的向下走
int t2 = min(flo[i - ] * b + flo[i - ] * a, flo[i - ] * a + flo[i - ] * b);
//取最小
int t3 = min(t1, t2) + dp[i - ];
dp[i] = min(minn, t3);
}
printf("Case %d: %d\n", ++kase, dp[n]);
} return ;
}
NYOJ-1070诡异的电梯【Ⅰ】的更多相关文章
- NYIST 1070 诡异的电梯【Ⅰ】
诡异的电梯[Ⅰ]时间限制:1000 ms | 内存限制:65535 KB难度:3 描述新的宿舍楼有 N(1≤N≤100000) 层 and M(1≤M≤100000)个学生. 在新的宿舍楼里, 为了节 ...
- NYOJ 诡异的电梯 && nyoj 1204 魔法少女
诡异的电梯[Ⅰ] 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 新的宿舍楼有 N(1≤N≤100000) 层 and M(1≤M≤100000)个学生. 在新的宿舍楼里 ...
- XTUOJ 1206 Dormitory's Elevator
Dormitory's Elevator Time Limit : 1000 MS Memory Limit : 65536 KB Problem Description The new dorm ...
- 软件工程 --- Pair Project: Elevator Scheduler [电梯调度算法的实现和测试]
软件工程 --- Pair Project: Elevator Scheduler [电梯调度算法的实现和测试] 说明结对编程的优点和缺点. 结对编程的优点如下: 在独立设计.实现代码的过程中不 ...
- 你电梯没了—OO第二单元作业思考
写在前面 这三次电梯调度作业,主要是学习多线程并行操作,对于各个线程的时间轴的把握,互相的配合与影响,通过使用锁来解决访问冲突等方面. 个人在学会Thread相关操作之外,写出来一些奇怪结构的诡异操作 ...
- NYOJ 1007
在博客NYOJ 998 中已经写过计算欧拉函数的三种方法,这里不再赘述. 本题也是对欧拉函数的应用的考查,不过考查了另外一个数论基本定理:如何用欧拉函数求小于n且与n互质所有的正整数的和. 记eule ...
- NYOJ 998
这道题是欧拉函数的使用,这里简要介绍下欧拉函数. 欧拉函数定义为:对于正整数n,欧拉函数是指不超过n且与n互质的正整数的个数. 欧拉函数的性质:1.设n = p1a1p2a2p3a3p4a4...pk ...
- 你还可以再诡异点吗——SQL日志文件不断增长
前言 今天算是遇到了一个罕见的案例. SQL日志文件不断增长的各种实例不用多说,园子里有很多牛人有过介绍,如果我再阐述这些陈谷子芝麻,想必已会被无数次吐槽. 但这次我碰到的问题确实比较诡异,其解决方式 ...
- Delphi编程时候诡异地出现ORA-00937错误,记录解决它的思路和方法
首先需要说明,这个问题的出现需要几个前提:使用微软的Oracle驱动(使用Oracle自己的驱动不会出现这个问题).使用绑定变量法,使用Format等方式拼接SQL也不会出现这个问题,还有一些诡异的规 ...
随机推荐
- 二叉树中序遍历 (C语言实现)
在计算机科学中,树是一种重要的非线性数据结构,直观地看,它是数据元素(在树中称为结点)按分支关系组织起来的结构.二叉树是每个节点最多有两个子树的有序树.通常子树被称作“左子树”(left subtre ...
- 安卓之cannot convert from Fragment1 to Fragment
在写一个音乐播放器的时候,用到了fragment,结果在需要返回Fragment的方法里面,无法将Fragment1(Fragment的子类)强制转换成Fragment, 很是纳闷,我是参照一个开源代 ...
- ubuntu系统mysql.h no such file or directory
在Ubuntu系统中,你已经安装了mysql,即你使用sudo apt-get install mysql-server mysql-client然而使用C语言访问mysql数据库时,却发现出现了如下 ...
- Linux makefile 教程 非常详细,且易懂(转)
转自:http://blog.chinaunix.net/uid-27717694-id-3696246.html 原文地址:Linux makefile 教程 非常详细,且易懂 作者:Deem_pa ...
- 理解O/R Mapping
本文的目的是以最精炼的语言,理解什么是O/R Mapping,为什么要O/R Mapping,和如何进行O/R Mapping. 什么是O/R Mapping? 广义上,ORM指的是面向对象的对象模型 ...
- 解决css3遮罩层挡住下面元素事件的方法
比如大家常看到的鼠标移入图片中,会有一个挡住图片的黑色半透明遮罩层,上面还有文字介绍,这时候就会遇到该层遮挡住下面图片的跳转链接事件,这时候怎么办呢?有个简单的css3属性可以快速解决该问题:poin ...
- Yii2的相关学习记录,下载Yii2(一)
原先学习过Yii1的相关知识,虽然也是半懂不懂的,但稍微的结构是了解的.现在利用晚上的时间学习下Yii2的使用,打算建一个后台管理系统,这里记录下,以免自己以后忘记. 目前已看一部分Yii2的权威指南 ...
- CLR via C#可空值类型
我们知道,一个值类型的变量永远不可能为null.它总是包含值类型本身.遗憾的是,这在某些情况下会成为问题.例如,设计一个数据库时,可将一个列定义成为一个32位的整数,并映射到FCL的Int32数据类型 ...
- python之路基础篇
基础篇 1.Python基础之初识python 2.Python数据类型之字符串 3.Python数据类型之列表 4.Python数据类型之元祖 5.Python数据类型之字典 6.Python Se ...
- Android 开发中使用 SQLite 数据库
SQLite 介绍 SQLite 一个非常流行的嵌入式数据库,它支持 SQL 语言,并且只利用很少的内存就有很好的性能. 此外它还是开源的,任何人都可以使用它.许多开源项目((Mozilla, PHP ...