Paper:

ImageNet Classification with Deep Convolutional Neual Network





Achievements:

The model addressed by Alex etl.
achieved top-1 and top-5 test error rate of
37.5% and
17.0% of classifying the 1.2 million high-resolution images in the
ImageNet LSVRC-2010 contest into the 1000 different classes.

Model Architecture:

model architecture plot:

contains eight learned layers five convolutional and
three fully-connected.

The kernels of the second, fourth, and fifth convolutional layers are connected only to those kernel maps in the previous layer which reside
on the same GPU. The kernels of the third convolutional layer are connected to all kernel maps in the second layer.

 

Response-normalization layers follow the
first and second convolutional layers.
Max-pooling layers, of the kind described in Section 3.4,
follow both response-normalization layers as well as the fifth convolutional layer. The
ReLU non-linearity is applied to the output of every convolutional and fully-connected layer.





Interesting Points:

ReLU Nonlinearity: speed-up, six times faster than an equivalent network with tanh neurons.

Overlapping Pooling: enhance accuracy and prevent overfitting, reduces the top-1 and top-5 error rates by 0.4% and 0.3%; training model with
overlapping pooling find it slightly more difficult to overfit.

Dropout:prevent overfitting, reduces complex co-adaptations of neurons, since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to learn more robust
features that are useful in conjunction with many different random subsets of the other neurons.

[notes] ImageNet Classification with Deep Convolutional Neual Network的更多相关文章

  1. 1 - ImageNet Classification with Deep Convolutional Neural Network (阅读翻译)

    ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We tr ...

  2. Paper: ImageNet Classification with Deep Convolutional Neural Network

    本文介绍了Alex net 在imageNet Classification 中的惊人表现,获得了ImagaNet LSVRC2012第一的好成绩,开启了卷积神经网络在cv领域的广泛应用. 1.数据集 ...

  3. ImageNet Classification with Deep Convolutional Neural Network(转)

    这篇论文主要讲了CNN的很多技巧,参考这位博主的笔记:http://blog.csdn.net/whiteinblue/article/details/43202399 https://blog.ac ...

  4. 论文笔记《ImageNet Classification with Deep Convolutional Neural Network》

    一.摘要 了解CNN必读的一篇论文,有些东西还是可以了解的. 二.结构 1. Relu的好处: 1.在训练时间上,比tanh和sigmod快,而且BP的时候求导也很容易 2.因为是非饱和函数,所以基本 ...

  5. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  6. 中文版 ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 摘要 我们训练了一个大型深度卷积神经网络来将ImageNet LSVRC ...

  7. 《ImageNet Classification with Deep Convolutional Neural Networks》 剖析

    <ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 ...

  8. ImageNet Classification with Deep Convolutional Neural Networks(译文)转载

    ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geo ...

  9. [论文阅读] ImageNet Classification with Deep Convolutional Neural Networks(传说中的AlexNet)

    这篇文章使用的AlexNet网络,在2012年的ImageNet(ILSVRC-2012)竞赛中获得第一名,top-5的测试误差为15.3%,相比于第二名26.2%的误差降低了不少. 本文的创新点: ...

随机推荐

  1. php脚本业务逻辑

    设置时区 设置执行不超时 设置根目录常量 引入配置文件(自定义/模板) 错误记录 定义业务类 执行业务类::run() 数据库单例初始化(连接) 日志单例初始化(引入日志类,配置日志路径,日志开关) ...

  2. WINDOWS 7下安装CVXOPT

    闹腾了好几天,终于将CVXOPT安装成功,这里和大家分享安装过程: 从www.python.org下载并安装Python.接下来,使用Python 2.7.5(32bit)版本(注意:64位win 7 ...

  3. 2016022604 - redis命令介绍

    Redis keys命令用于在Redis的管理键. Redis keys命令使用语法如下所示: redis最新版本目前是3.0.7 redis 127.0.0.1:6379> COMMAND K ...

  4. 关于Kingfisher--备用

    序言--感谢好心大神分享 Kingfisher 是由 @onevcat 编写的用于下载和缓存网络图片的轻量级Swift工具库,其中涉及到了包括GCD.Swift高级语法.缓存.硬盘读写.网络编程.图像 ...

  5. Application+Handle+Task

    Application Application和Activity,Service一样,是android框架的一个系统组件,android系统会为每个程序运行时创建一个Application类的对象且仅 ...

  6. wcf安全

    http://www.cnblogs.com/artech/archive/2011/07/07/customauthorization01.html 安全 http://www.cnblogs.co ...

  7. 从内部剖析C# 集合之---- HashTable

    这是我在博客园的第一篇文章,写的不好或有错误的地方,望各位大牛指出,不甚感激. 计划写几篇文章专门介绍HashTable,Dictionary,HashSet,SortedList,List 等集合对 ...

  8. mysql主从配置(清晰的思路)

    mysql主从配置.鄙人是在如下环境测试的: 主数据库所在的操作系统:win7 主数据库的版本:5.0 主数据库的ip地址:192.168.1.111 从数据库所在的操作系统:linux 从数据的版本 ...

  9. Linux启动或禁止SSH用户及IP的登录

    启动或禁止SSH用户登录 一般情况下,在使用Linux操作系统都不会去机房来操作机器,都是使用一些第三方的工具来操作. 比如使用SSH Secure File Transfer Client工具来传输 ...

  10. request.getParameter() 、 request.getInputStream()和request.getReader() 使用体会

    request.getParameter(). request.getInputStream().request.getReader()这三种方法是有冲突的,因为流只能被读一次.比如:当form表单内 ...