Paper:

ImageNet Classification with Deep Convolutional Neual Network





Achievements:

The model addressed by Alex etl.
achieved top-1 and top-5 test error rate of
37.5% and
17.0% of classifying the 1.2 million high-resolution images in the
ImageNet LSVRC-2010 contest into the 1000 different classes.

Model Architecture:

model architecture plot:

contains eight learned layers five convolutional and
three fully-connected.

The kernels of the second, fourth, and fifth convolutional layers are connected only to those kernel maps in the previous layer which reside
on the same GPU. The kernels of the third convolutional layer are connected to all kernel maps in the second layer.

 

Response-normalization layers follow the
first and second convolutional layers.
Max-pooling layers, of the kind described in Section 3.4,
follow both response-normalization layers as well as the fifth convolutional layer. The
ReLU non-linearity is applied to the output of every convolutional and fully-connected layer.





Interesting Points:

ReLU Nonlinearity: speed-up, six times faster than an equivalent network with tanh neurons.

Overlapping Pooling: enhance accuracy and prevent overfitting, reduces the top-1 and top-5 error rates by 0.4% and 0.3%; training model with
overlapping pooling find it slightly more difficult to overfit.

Dropout:prevent overfitting, reduces complex co-adaptations of neurons, since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to learn more robust
features that are useful in conjunction with many different random subsets of the other neurons.

[notes] ImageNet Classification with Deep Convolutional Neual Network的更多相关文章

  1. 1 - ImageNet Classification with Deep Convolutional Neural Network (阅读翻译)

    ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We tr ...

  2. Paper: ImageNet Classification with Deep Convolutional Neural Network

    本文介绍了Alex net 在imageNet Classification 中的惊人表现,获得了ImagaNet LSVRC2012第一的好成绩,开启了卷积神经网络在cv领域的广泛应用. 1.数据集 ...

  3. ImageNet Classification with Deep Convolutional Neural Network(转)

    这篇论文主要讲了CNN的很多技巧,参考这位博主的笔记:http://blog.csdn.net/whiteinblue/article/details/43202399 https://blog.ac ...

  4. 论文笔记《ImageNet Classification with Deep Convolutional Neural Network》

    一.摘要 了解CNN必读的一篇论文,有些东西还是可以了解的. 二.结构 1. Relu的好处: 1.在训练时间上,比tanh和sigmod快,而且BP的时候求导也很容易 2.因为是非饱和函数,所以基本 ...

  5. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  6. 中文版 ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 摘要 我们训练了一个大型深度卷积神经网络来将ImageNet LSVRC ...

  7. 《ImageNet Classification with Deep Convolutional Neural Networks》 剖析

    <ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 ...

  8. ImageNet Classification with Deep Convolutional Neural Networks(译文)转载

    ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geo ...

  9. [论文阅读] ImageNet Classification with Deep Convolutional Neural Networks(传说中的AlexNet)

    这篇文章使用的AlexNet网络,在2012年的ImageNet(ILSVRC-2012)竞赛中获得第一名,top-5的测试误差为15.3%,相比于第二名26.2%的误差降低了不少. 本文的创新点: ...

随机推荐

  1. WF学习笔记(四)

    1.使用WorkflowApplication.OnUnhandledException 处理Code异常 ,用于产生异常的Activity: public class ExceptionActivi ...

  2. #Leet Code# Unique Tree

    语言:Python 描述:使用递归实现 class Solution: # @return an integer def numTrees(self, n): : elif n == : else: ...

  3. Meditation Guide

    Meditation “Stop!!!” don’t we just scream[vi. 尖叫:呼啸:发出尖锐刺耳的声音:令人触目惊心 ] this in our minds when the da ...

  4. Linux下安装MySQLdb

    在Linux下使用Python访问MySQL的方法之一是使用MySQLdb module,下面将介绍在Linux下如何安装MySQLdb的过程. (1)下载MySQLdb 从SourceForge.n ...

  5. JSP内置对象(下)

    JSP中共有9大内置对象: out对象 requset对象 response对象 session对象 pageContext对象 application对象 config对象 page对象 excep ...

  6. c++/MFC 封装好的文件内存映射类

    整理日: 2015年2月16日 首先介绍内存映射文件操作------函数的用法以及先后执行顺序 // 第一步:创建文件 HANDLE hFile = CreateFileForMapping(_T(& ...

  7. windows相关小知识

    获得本机MAC1 快捷键win+R打开运行窗口, 输入cmd回车进入控制台2 输入ipconfig -all  找到本地连接中的物理地址 根据IP获得MAC方法:1 进入cmd控制台,执行:ping ...

  8. 消息队列msmq

    http://q.cnblogs.com/q/26895/ 远程队列必须现在运程服务器上创建. 在 Windows Server 2008 上安装 IIS 服务和 MSMQ 功能后,系统会在 IIS  ...

  9. 基于Qt的信号分析简单应用软件的设计

    一.需求描述: 1.读取data.asc文件,分析其连续性: 2.绘制信号图像,并保存. 二.UI界面组成: 该应用的UI由以下几个控件组成: 3个PushButton:打开文件.图像保存.退出: 1 ...

  10. 水题:HDU 5112 A Curious Matt

    Description There is a curious man called Matt. One day, Matt's best friend Ted is wandering on the ...