[notes] ImageNet Classification with Deep Convolutional Neual Network
Paper:
ImageNet Classification with Deep Convolutional Neual Network
Achievements:
The model addressed by Alex etl.
achieved top-1 and top-5 test error rate of
37.5% and
17.0% of classifying the 1.2 million high-resolution images in the
ImageNet LSVRC-2010 contest into the 1000 different classes.
Model Architecture:
model architecture plot:
contains eight learned layers five convolutional and
three fully-connected.
The kernels of the second, fourth, and fifth convolutional layers are connected only to those kernel maps in the previous layer which reside
on the same GPU. The kernels of the third convolutional layer are connected to all kernel maps in the second layer.
Response-normalization layers follow the
first and second convolutional layers.
Max-pooling layers, of the kind described in Section 3.4,
follow both response-normalization layers as well as the fifth convolutional layer. The
ReLU non-linearity is applied to the output of every convolutional and fully-connected layer.
Interesting Points:
ReLU Nonlinearity: speed-up, six times faster than an equivalent network with tanh neurons.
Overlapping Pooling: enhance accuracy and prevent overfitting, reduces the top-1 and top-5 error rates by 0.4% and 0.3%; training model with
overlapping pooling find it slightly more difficult to overfit.
Dropout:prevent overfitting, reduces complex co-adaptations of neurons, since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to learn more robust
features that are useful in conjunction with many different random subsets of the other neurons.
[notes] ImageNet Classification with Deep Convolutional Neual Network的更多相关文章
- 1 - ImageNet Classification with Deep Convolutional Neural Network (阅读翻译)
ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We tr ...
- Paper: ImageNet Classification with Deep Convolutional Neural Network
本文介绍了Alex net 在imageNet Classification 中的惊人表现,获得了ImagaNet LSVRC2012第一的好成绩,开启了卷积神经网络在cv领域的广泛应用. 1.数据集 ...
- ImageNet Classification with Deep Convolutional Neural Network(转)
这篇论文主要讲了CNN的很多技巧,参考这位博主的笔记:http://blog.csdn.net/whiteinblue/article/details/43202399 https://blog.ac ...
- 论文笔记《ImageNet Classification with Deep Convolutional Neural Network》
一.摘要 了解CNN必读的一篇论文,有些东西还是可以了解的. 二.结构 1. Relu的好处: 1.在训练时间上,比tanh和sigmod快,而且BP的时候求导也很容易 2.因为是非饱和函数,所以基本 ...
- AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...
- 中文版 ImageNet Classification with Deep Convolutional Neural Networks
ImageNet Classification with Deep Convolutional Neural Networks 摘要 我们训练了一个大型深度卷积神经网络来将ImageNet LSVRC ...
- 《ImageNet Classification with Deep Convolutional Neural Networks》 剖析
<ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 ...
- ImageNet Classification with Deep Convolutional Neural Networks(译文)转载
ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geo ...
- [论文阅读] ImageNet Classification with Deep Convolutional Neural Networks(传说中的AlexNet)
这篇文章使用的AlexNet网络,在2012年的ImageNet(ILSVRC-2012)竞赛中获得第一名,top-5的测试误差为15.3%,相比于第二名26.2%的误差降低了不少. 本文的创新点: ...
随机推荐
- dotnet core多平台开发体验
前言 随着net core rc2的发布,园子里面关于net core的入门文章也也多了起来,但是大多数都是在一个平台上面来写几个简单的例子,或者是在解释代码本身,并没有体现说在一个平台上面创建一个项 ...
- 转载:如何避免代码中的if嵌套
http://top.jobbole.com/4960/ http://stackoverflow.com/questions/24430504/how-to-avoid-if-chains 在Sta ...
- 写个简单的ANT脚本来编译项目
<?xml version="1.0" encoding="GBK"?> <project name="j2ee project&q ...
- Seven Steps to Success Machine Learning in Practice
Seven Steps to Success Machine Learning in Practice Project failures in IT are all too common. The r ...
- net.sf.json在处理json对象转换为普通java实体对象时的问题和解决方案
我使用的net.sf.json是json-lib-2.4-jdk15.jar,把json对象转换为普通java实体对象时候有个问题,josn对象转换为java对象之后,json串里面的那几个小数点的值 ...
- Keil C51调试程序时, 对ROM的查看以及RAM 查看或修改
在Keil 里使用 DeBug 模式时,如要 查看外部 RAM 的数据 或查看 ACC 的内容可以进行以下操作; sysGetTxMode: LCALL Com0185(C:2B95) ,sysGet ...
- 又拍云——图像处理师(GraphicsMagick、ImageMagick、FFmpeg)
云处理平台开发工程师 工作地:杭州 岗位职责:负责云处理平台研发工作: 岗位要求: 扎实的 C 语言编程基础及算法优化能力: 至少能够熟练使用一门脚本语言(Python.Ruby.Lua 等)进行日常 ...
- Spring MVC 解读——<context:component-scan/>
转自:http://my.oschina.net/HeliosFly/blog/203149 作者:GoodLoser. Spring MVC 解读---<context:component-s ...
- jinfo命令(Java Configuration Info)
jinfo可以输出并修改运行时的java 进程的opts.用处比较简单,用于输出JAVA系统参数及命令行参数.用法是jinfo -opt pid 如:查看2788的MaxPerm大小可以用 jin ...
- Intervals(差分约束)
http://poj.org/problem?id=1201 题意:给出N个整数区间[ai,bi],并且给出一个约束ci,( 1<= ci <= bi-ai+1),使得数组Z在区间[ai, ...