BZOJ 3744 Gty的妹子序列
Description
我早已习惯你不在身边,
人间四月天 寂寞断了弦。
回望身后蓝天,
跟再见说再见……
某天,蒟蒻Autumn发现了从 Gty的妹子树上掉落下来了许多妹子,他发现
她们排成了一个序列,每个妹子有一个美丽度。
Bakser神犇与他打算研究一下这个妹子序列,于是Bakser神犇问道:"你知道区间\([l,r]\)中妹子们美丽度的逆序对数吗?"
蒟蒻Autumn只会离线乱搞啊……但是Bakser神犇说道:"强制在线。"
请你帮助一下Autumn吧。
给定一个正整数序列\(a\),对于每次询问,输出\(a_{l}...a_{r}\)中的逆序对数,强制在线。
Input
第一行包括一个整数\(n(1 \le n \le 50000)\),表示数列\(a\)中的元素数。
第二行包括\(n\)个整数\(a_{1}...a_{n}\)(\(a_{i}>0\),保证\(a_{i}\)在\(int\)内)。
接下来一行包括一个整数\(m(1 \le m \le 50000)\),表示询问的个数。
接下来m行,每行包括\(2\)个整数\(l,r(1 \le l \le r \le n)\),表示询问\(a_{l}...a_{r}\)中的逆序
对数(若\(a_{i}>a_{j}\)且\(a_{i}<a_{j}\),则为一个逆序对)。
\(l,r\)要分别异或上一次询问的答案\((lastans)\),最开始时\(lastans=0\)。
保证涉及的所有数在\(int\)内。
Output
对每个询问,单独输出一行,表示\(a_{l}...a_{r}\)中的逆序对数。
Sample Input
4
1 4 2 3
1
2 4
Sample Output
2
一道很典型的分块题目。
首先将序列离散化,之后分块记录这些值:\(have[i][j]\)表示第\(i\)个块中小于等于\(j\)的元素个数;\(rev[i]\)表示第\(i\)个块的逆序对个数;\(ref2[i][j]\)表示\(i\)块与下标小于等于\(j\)的序列元素构成的逆序对数(\(A_{j}\)不在第\(i\)块内);\(ref3[i][j]\)第\(i\)块与前\(j\)块所构成逆序对数目。(预处理在\(O(n\sqrt{n})\)的时间内完成)
询问的话,块与块之间的我们可以用\(ref3\)在\(O(\sqrt{n})\)的时间内算出,块与散部可以用\(ref2\)在\(O(\sqrt{n})\)的时间内算出。散与散的只能用树状数组暴力求解,在\(O(\sqrt{n}logn)\)的时间内算出结果。
综上,本题时间复杂度\(O(n\sqrt{n}+m\sqrt{n}logn)\),空间复杂度\(O(n\sqrt{n})\)。有不理解的参考代码。
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
using namespace std;
#define maxn 50010
const int len = 230;
int n,m,ans,A[maxn],bac[maxn],have[len][maxn];
int rev[maxn],tree[maxn],ref2[len][maxn],ref3[len][len],tot;
inline int begin(int ord) { return (ord-1)*len+1; }
inline int end(int ord) { return min(ord*len,n); }
inline int belong(int ord) { return (ord+len-1)/len; }
inline int size(int ord) { return end(ord)-begin(ord)+1; }
inline int lowbit(int x) { return x & -x; }
inline void ins(int x,int y) { for (;x <= n;x += lowbit(x)) tree[x] += y; }
inline int calc(int x) { int ret = 0; for (;x;x -= lowbit(x)) ret += tree[x]; return ret; }
inline void ready()
{
for (int i = 1;i <= n;++i) bac[i] = A[i];
sort(bac+1,bac+n+1); tot = unique(bac+1,bac+n+1)-bac-1;
for (int i = 1;i <= n;++i) A[i] = lower_bound(bac+1,bac+tot+1,A[i])-bac;
tot = (n + len-1)/len;
for (int i = 1;i <= tot;++i)
{
int l = begin(i),r = end(i);
for (int j = l;j <= r;++j) have[i][A[j]]++;
for (int j = 1;j <= n;++j) have[i][j] += have[i][j-1];
for (int j = l;j <= r;++j) for (int k = j+1;k <= r;++k) rev[i] += A[j] > A[k];
}
for (int i = 1;i <= tot;++i)
{
int l = begin(i),r = end(i);
for (int j = 1;j < l;++j)
ref2[i][j] += ref2[i][j-1],ref2[i][j] += have[i][A[j]-1];
for (int j = r+1;j <= n;++j)
ref2[i][j] += ref2[i][j-1],ref2[i][j] += size(i)-have[i][A[j]];
}
for (int i = 1;i <= n;++i)
{
int now = belong(i);
for (int j = 1;j < now;++j)
ref3[now][j] += size(j)-have[j][A[i]];
}
for (int i = 1;i <= tot;++i)
for (int j = 2;j < i;++j)
ref3[i][j] += ref3[i][j-1];
}
inline int work(int l,int r)
{
int tot = 0,L = belong(l),R = belong(r),p = end(L),q = begin(R);
for (int i = L+1;i < R;++i)
{
tot += rev[i];
tot += ref3[i][i-1] - ref3[i][L];
tot += ref2[i][p]-ref2[i][l-1];
tot += ref2[i][r]-ref2[i][q-1];
}
if (L != R)
{
for (int i = r;i >= q;--i) tot += calc(A[i]-1),ins(A[i],1);
for (int i = p;i >= l;--i) tot += calc(A[i]-1),ins(A[i],1);
for (int i = r;i >= q;--i) ins(A[i],-1);
for (int i = p;i >= l;--i) ins(A[i],-1);
}
else
{
for (int i = r;i >= l;--i) tot += calc(A[i]-1),ins(A[i],1);
for (int i = r;i >= l;--i) ins(A[i],-1);
}
return tot;
}
int main()
{
freopen("3744.in","r",stdin);
freopen("3744.out","w",stdout);
scanf("%d",&n);
for (int i = 1;i <= n;++i) scanf("%d",A+i);
ready();
scanf("%d",&m);
for (int i = 1;i <= m;++i)
{
int l,r; scanf("%d %d",&l,&r);
l ^= ans; r ^= ans;
printf("%d\n",ans = work(l,r));
}
fclose(stdin); fclose(stdout);
return 0;
}
BZOJ 3744 Gty的妹子序列的更多相关文章
- bzoj 3744: Gty的妹子序列 主席树+分块
3744: Gty的妹子序列 Time Limit: 15 Sec Memory Limit: 128 MBSubmit: 101 Solved: 34[Submit][Status] Descr ...
- BZOJ 3744 Gty的妹子序列 (分块 + BIT)
3744: Gty的妹子序列 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1931 Solved: 570[Submit][Status][Dis ...
- BZOJ 3744: Gty的妹子序列 【分块 + 树状数组 + 主席树】
任意门:https://www.lydsy.com/JudgeOnline/problem.php?id=3744 3744: Gty的妹子序列 Time Limit: 20 Sec Memory ...
- bzoj 3744 Gty的妹子序列 区间逆序对数(在线) 分块
题目链接 题意 给定\(n\)个数,\(q\)个询问,每次询问\([l,r]\)区间内的逆序对数. 强制在线. 思路 参考:http://www.cnblogs.com/candy99/p/65795 ...
- BZOJ 3744 Gty的妹子序列 (分块+树状数组+主席树)
题面传送门 题目大意:给你一个序列,多次询问,每次取出一段连续的子序列$[l,r]$,询问这段子序列的逆序对个数,强制在线 很熟悉的分块套路啊,和很多可持久化01Trie的题目类似,用分块预处理出贡献 ...
- BZOJ 3744: Gty的妹子序列 [分块]
传送门 题意:询问区间内逆序对数 感觉这种题都成套路题了 两个预处理$f[i][j]$块i到j的逆序对数,$s[i][j]$前i块$\le j$的有多少个 f我直接处理成到元素j,方便一点 用个树状数 ...
- BZOJ - 3744 Gty的妹子序列 (区间逆序对数,分块)
题目链接 静态区间逆序对数查询,这道题用线段树貌似不好做,可以把区间分成$\sqrt n$块,预处理出两个数组:$sum[i][j]$和$inv[i][j]$,$sum[i][j]$表示前i个块中小于 ...
- BZOJ 3744 Gty的妹子序列 做法集结
我只会O(nnlogn)O(n\sqrt nlogn)O(nnlogn)的 . . . . 这是分块+树状数组+主席树的做法O(nnlogn)O(n\sqrt nlogn)O(nnlogn) 搬来 ...
- BZOJ 3744 Gty的妹子序列 分块+树状数组
具体分析见 搬来大佬博客 时间复杂度 O(nnlogn)O(n\sqrt nlogn)O(nnlogn) CODE #include <cmath> #include <cctyp ...
随机推荐
- oracle正则截取字符串的函数
现在有这么一个需求, 数据库中的一个手输的'籍贯'字段,要按一定的规范截取显示在报表上,比如,如果'籍贯'的内容是:'山东省潍坊市昌乐县', 那么报表里要显示为:'山东昌乐', 如果'籍贯'是山东省潍 ...
- C# SQL多条件查询拼接技巧
本文转载:http://blog.csdn.net/limlimlim/article/details/8638080 #region 多条件搜索时,使用List集合来拼接条件(拼接Sql) Stri ...
- Spring Data MongoDB example with Spring MVC 3.2
Spring Data MongoDB example with Spring MVC 3.2 Here is another example web application built with S ...
- android 16 带返回值的activity
main.xml <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" andro ...
- systemtap [主设备号,次设备好,inode]监控文件
SystemTap 是监控和跟踪运行中的linux 内核的操作的动态方法,SystemTap 应用:对管理员,SystemTap可用于监控系统性能,找出系统瓶颈,而对于开发者,可以查看他们的程序运行时 ...
- Android(java)学习笔记212:中文乱码的问题处理(qq登录案例)
1.我们在之前的笔记中LoginServlet.java中,我们Tomcat服务器回复给客户端的数据是英文的"Login Success","Login Failed&q ...
- C#压缩文件为zip格式
Vercher C#压缩文件为zip格式 需要ICSharpCode.SharpZipLib.dll,网上下载的到. 代码是从网上找来的: 1 public class ZipClass 2 { ...
- instanceof的用法②
其实这个问题以前也困扰过我.我个人理解的一个应用场合就是,当你拿到一个对象的引用时(例如参数), 你可能需要判断这个引用真正指向的类.所以你需要从该类继承树的最底层开始,使用instanceof操作符 ...
- ssh框架简单搭建
这里是个人对SSH框架搭建的一点心得,仅供新手,勿喷 首先,搞清楚分层, 视图层 --> 控制层 --> 业务层 --> DAO层--> 持久层 搭建的顺序是从后向前,搭建一 ...
- android 利用隐式Intent打开图片
实现功能 点击"查看图片"时能够跳出提示,选择系统图库打开还是自己编写的应用打开,并且对于下载好的图片也有效. 1.我将 qiaoba.jpg 放在 res/drawable ...