LintCode 88. Lowest Common Ancestor (Medium)

LeetCode 236. Lowest Common Ancestor of a Binary Tree (Medium)

今天写了三种解法, 都比较长.

解法1 前序递归DFS, 计数

这个解法的判断比较啰嗦, 但好处就是, 能够根据当前情况选择是否继续向下遍历, 不做无用的搜索. 越早地找到两个节点, 程序就会越早结束.

class Solution {
private:
TreeNode *lca;
TreeNode *tA, *tB;
int findLCA(TreeNode *root) {
if (!root) return 0;
int cnt = 0;
if (root->val == tA->val) ++cnt;
if (root->val == tB->val) ++cnt;
if (cnt == 2) {
lca = root;
return 2;
}
int leftCnt = findLCA(root->left);
if (leftCnt == 2) return 2;
cnt += leftCnt;
if (cnt == 2) {
lca = root;
} else {
int rightCnt = findLCA(root->right);
if (rightCnt == 2) return 2;
cnt += rightCnt;
if (cnt == 2) {
lca = root;
}
}
return cnt;
}
public:
TreeNode *lowestCommonAncestor(TreeNode *root, TreeNode *A, TreeNode *B) {
if (!root || !A || !B) return NULL;
lca = NULL;
tA = A, tB = B;
findLCA(root);
return lca;
}
};

时间复杂度: O(n)

空间复杂度: O(logn) (考虑到递归的堆栈消耗)

解法2 后序非递归DFS

写了递归的, 自然就想写个非递归的.

思路是:

  1. 在碰到第一个节点的时候让LCA_PTR指向当前节点, 真正的LCA一定是*LCA_PTR本身或者上游节点.
  2. 每次路过*LCA_PTR的父节点的时候, LCA_PTR上移指向父节点. (前序和中序非递归遍历中, 路过就是访问; 后序非递归遍历中, 路过不一定是访问)
  3. 当碰到第二个节点的时候, LCA_PTR停留的地方就是真正的LCA.

但是写着写着才注意到, 步骤2决定了必须要用后序遍历才行. 因为前序和中序遍历中, 找到目标节点时, 父节点的遍历可能已经结束了.

要注意的是步骤2中的路过, 即

if (lca && root->left == lca || root->right == lca) {
lca = root;
}

应该紧随root = s.top(), 而不是放在"访问当前节点"的地方.

class Solution {
public:
TreeNode *lowestCommonAncestor(TreeNode *root, TreeNode *A, TreeNode *B) {
if (!root || !A || !B) return NULL;
TreeNode *lca = NULL;
stack<TreeNode*> s;
TreeNode *prev = NULL;
int cnt = 0;
while (root || !s.empty()) {
while (root) {
s.push(root);
root = root->left;
}
root = s.top();
if (lca && root->left == lca || root->right == lca) {
lca = root;
}
if (!root->right || root->right == prev) {
s.pop();
if (root->val == A->val) {
++cnt;
if (cnt == 1) lca = root;
}
if (root->val == B->val) {
++cnt;
if (cnt == 1) lca = root;
}
if (cnt == 2) return lca;
prev = root;
root = NULL;
} else {
root = root->right;
}
}
return NULL;
}
};

时间复杂度: O(n)

空间复杂度: O(n)

解法3 单链表的交点

当每个节点有指向父节点的指针时可以用这种方法. 题中的TreeNode结构没有parent指针, 用map构造就好了.

class Solution {
private:
map<TreeNode*, TreeNode*> parents; void buildParents(TreeNode *root) {
if (root->left) {
parents[root->left] = root;
buildParents(root->left);
}
if (root->right) {
parents[root->right] = root;
buildParents(root->right);
}
} int depth(TreeNode *node) {
int d = 0;
while (node) {
node = parents[node];
++d;
}
return d;
}
public:
TreeNode *lowestCommonAncestor(TreeNode *root, TreeNode *A, TreeNode *B) {
if (!root || !A || !B) return NULL;
parents.clear();
parents[root] = NULL;
buildParents(root); int da = depth(A), db = depth(B);
if (da < db) {
swap(da, db);
swap(A, B);
}
while (da > db) {
A = parents[A];
da--;
}
while (da && A != B) {
A = parents[A];
B = parents[B];
da--;
}
return A;
}
};

时间复杂度: O(n)

空间复杂度: O(n)

解法4 双堆栈

回顾了一下LeetCode上半年前写的代码, 发现当时思路还蛮清晰. 思路类似解法2, 但是多用一个堆栈表示从root到LCA的路径, 好处就是代码更清晰一些, 而且中序遍历即可.

class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
stack<TreeNode*> s;
stack<TreeNode*> path;
bool foundFirst = false;
TreeNode *lca = NULL;
while (root || !s.empty()) {
while (root) {
if (!foundFirst) {
path.push(root);
}
s.push(root);
root = root->left;
}
root = s.top();
if (!path.empty() && root == path.top()) {
lca = root;
path.pop();
}
s.pop();
if (root == p || root == q) {
if (foundFirst) {
return lca;
}
foundFirst = true;
}
root = root->right;
}
return NULL;
}
};

时间复杂度: O(n)

空间复杂度: O(n)

解法5 前序递归DFS, 指针

这代码应该是当初看了LeetCode Discuss中的解答写出来的. 相对于解法1, 代码很简洁, 用指针的回传表达是否找到目标节点. 要说缺陷, 就是扫描的点比解法1多一些.

class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if (!root || root == p || root == q) return root;
TreeNode *left = lowestCommonAncestor(root->left, p, q), *right = lowestCommonAncestor(root->right, p, q);
return left && right ? root : (left ? left : right);
}
};

时间复杂度: O(n)

空间复杂度: O(logn)

[OJ] Lowest Common Ancestor的更多相关文章

  1. LeetCode OJ 236. Lowest Common Ancestor of a Binary Tree

    Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According ...

  2. LeetCode OJ 235. Lowest Common Ancestor of a Binary Search Tree

    Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...

  3. LeetCode OJ:Lowest Common Ancestor of a Binary Tree(最近公共祖先)

    Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According ...

  4. LeetCode OJ:Lowest Common Ancestor of a Binary Search Tree(最浅的公共祖先)

    Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...

  5. [LeetCode] Lowest Common Ancestor of a Binary Tree 二叉树的最小共同父节点

    Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According ...

  6. [LeetCode] Lowest Common Ancestor of a Binary Search Tree 二叉搜索树的最小共同父节点

    Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...

  7. 48. 二叉树两结点的最低共同父结点(3种变种情况)[Get lowest common ancestor of binary tree]

    [题目] 输入二叉树中的两个结点,输出这两个结点在数中最低的共同父结点. 二叉树的结点定义如下:  C++ Code  123456   struct BinaryTreeNode {     int ...

  8. [LeetCode]Lowest Common Ancestor of a Binary Search Tree

    Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...

  9. 数据结构与算法(1)支线任务4——Lowest Common Ancestor of a Binary Tree

    题目如下:https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-tree/ Given a binary tree, fin ...

随机推荐

  1. Magento强大的配置系统

    Magento的配置系统就像是Magento的心脏,支撑着Magento的运行.这套配置系统掌管着几乎所有"module/model/class/template/etc".它把整 ...

  2. flash&nbsp;wmode=&quot;window&amp;qu…

    引用一段话:opaque和tranparent由于都是无窗口内渲染模式,能很好的实现各层的遮挡,和一般div元素没有太大区别,而window.direct模式在现在看来,是没有任何办法实现被DHTML ...

  3. java中判断Object对象类型

    记录一下 Object param = params.get(i); if (param instanceof Integer) { int value = ((Integer) param).int ...

  4. 不需要软件让Windows7变身WIFI热点

    很简单,就是把一台装有windows 7操作系统,并配有无线网卡的电脑变成一台无线路由器或无线AP,以便在没有路由器的环境中实现多台无线终端(比如支持wifi的手机.电脑等设备)共享无线网络.那么我们 ...

  5. MVC小系列(一)【制作表格】

    在Razor引擎中,对于在表格中进行遍历时,一般会这样写 复制代码 <table border="> @{ ; i < ; i++) { <tr> <td ...

  6. c语言学习之基础知识点介绍(十五):函数的指针

    一.函数的指针的介绍 /* 函数指针: 函数的指针,本质上一个指针 指向函数的指针,就是一个函数指针. 回忆:我们写的源代码编译成二进制的指令集,一串交给CPU执行的指令 先存在内存里面,然后CPU读 ...

  7. 有理数类 Java BigInteger实现

    import java.math.BigInteger; public class Rational extends Number implements Comparable { private Bi ...

  8. iOS 计算两个日期之间的天数问题

    //获取当前时间若干年.月.日之后的时间 + (NSDate *)dateWithFromDate:(NSDate *)date years:(NSInteger)years months:(NSIn ...

  9. iOS控件——UIView与UIImageView播放动画的实现方法

    1.UIView //初始状态 [UIView animateWithDuration:(int) animations:^{ //最终状态 }completion:^(BOOL finished){ ...

  10. nginx 安装过程中遇到的问题

    安装Nginx时报错 ./configure: error: the HTTP rewrite module requires the PCRE library. 安装pcre-devel解决问题yu ...