Delay Constrained Maximum Capacity Path

Time Limit: 10000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 544    Accepted Submission(s): 192

Problem Description
Consider an undirected graph with N vertices, numbered from 1 to N, and M edges. The vertex numbered with 1 corresponds to a mine from where some precious minerals are extracted. The vertex numbered with N corresponds to a minerals processing factory. Each edge has an associated travel time (in time units) and capacity (in units of minerals). It has been decided that the minerals which are extracted from the mine will be delivered to the factory using a single path. This path should have the highest capacity possible, in order to be able to transport simultaneously as many units of minerals as possible. The capacity of a path is equal to the smallest capacity of any of its edges. However, the minerals are very sensitive and, once extracted from the mine, they will start decomposing after T time units, unless they reach the factory within this time interval. Therefore, the total travel time of the chosen path (the sum of the travel times of its edges) should be less or equal to T.

 
Input
The first line of input contains an integer number X, representing the number of test cases to follow. The first line of each test case contains 3 integer numbers, separated by blanks: N (2 <= N <= 10.000), M (1 <= M <= 50.000) and T (1 <= T <= 500.000). Each of the next M lines will contain four integer numbers each, separated by blanks: A, B, C and D, meaning that there is an edge between vertices A and B, having capacity C (1 <= C <= 2.000.000.000) and the travel time D (1 <= D <= 50.000). A and B are different integers between 1 and N. There will exist at most one edge between any two vertices.

 
Output
For each of the X test cases, in the order given in the input, print one line containing the highest capacity of a path from the mine to the factory, considering the travel time constraint. There will always exist at least one path between the mine and the factory obbeying the travel time constraint.

 
Sample Input
2
2 1 10
1 2 13 10
4 4 20
1 2 1000 15
2 4 999 6
1 3 100 15
3 4 99 4
 
Sample Output
13
99
 

题目:给m条管道,每条管道有可运输的最大容量和消耗的时间c,t

现在有东西要从1运输到n,必须在时间T内完成,求符合条件的可运输的最大容量

分析:对于所给的m条管道的最大容量,进行排序,然后二分容量求从1到n的最短时间即可

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<queue>
#include<algorithm>
#include<map>
#include<vector>
#include<iomanip>
#define INF 99999999
using namespace std; const int MAX=10000+10;
int s[MAX*5],n,m,t;
int size,head[MAX],dist[MAX];
bool mark[MAX];
typedef pair<int,int>mp; struct Edge{
int v,c,t,next;
Edge(){}
Edge(int &V,int &C,int &T,int NEXT):v(V),c(C),t(T),next(NEXT){}
}edge[MAX*5*2]; inline void Init(int num){
memset(head,-1,sizeof(int)*(num+2));
size=0;
} inline void InsertEdge(int u,int v,int &c,int &t){
edge[size]=Edge(v,c,t,head[u]);//头插法
head[u]=size++;
} inline bool Dijkstra(int s,int t,int c,int T){
for(int i=1;i<=n;++i)mark[i]=false,dist[i]=INF;
dist[s]=0,mark[s]=true;
priority_queue< mp,vector<mp>,greater<mp> >q;
mp oq;
q.push(mp(0,s));
while(!q.empty()){
oq=q.top();
q.pop();
if(oq.first>T)return false;
if(oq.second == t)return dist[t];//dist[t]<=T;
mark[oq.second]=true;
for(int i=head[oq.second];i != -1;i=edge[i].next){
int v=edge[i].v;
if(mark[v] || edge[i].c<c)continue;
if(oq.first+edge[i].t<dist[v]){
dist[v]=oq.first+edge[i].t;
q.push(mp(dist[v],v));
}
}
}
return false;//无法到达t
} int main(){
int num,u,v,c,T;
cin>>num;
while(num--){
scanf("%d%d%d",&n,&m,&t);
Init(n);
for(int i=0;i<m;++i){
scanf("%d%d%d%d",&u,&v,&c,&T);
InsertEdge(u,v,c,T);
InsertEdge(v,u,c,T);
s[i]=c;
}
sort(s,s+m);
int left=0,right=0,mid;
for(int i=1;i<m;++i)if(s[i] != s[i-1])s[++right]=s[i];
while(left<=right){
mid=left+right>>1;
if(Dijkstra(1,n,s[mid],t))left=mid+1;
else right=mid-1;
}
printf("%d\n",s[right]);
}
return 0;
}

hdu1839之二分+邻接表+Dijkstra+队列优化的更多相关文章

  1. POJ 1511 - Invitation Cards 邻接表 Dijkstra堆优化

    昨天的题太水了,堆优化跑的不爽,今天换了一个题,1000000个点,1000000条边= = 试一试邻接表 写的过程中遇到了一些问题,由于习惯于把数据结构封装在 struct 里,结果 int [10 ...

  2. HDU 2544 最短路(floyd+bellman-ford+spfa+dijkstra队列优化)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544 题目大意:找点1到点n的最短路(无向图) 练一下最短路... dijkstra+队列优化: #i ...

  3. ACM/ICPC 之 数据结构-邻接表+DP+队列+拓扑排序(TSH OJ-旅行商TSP)

    做这道题感觉异常激动,因为在下第一次接触拓扑排序啊= =,而且看了看解释,猛然发现此题可以用DP优化,然后一次A掉所有样例,整个人激动坏了,哇咔咔咔咔咔咔咔~ 咔咔~哎呀,笑岔了- -|| 旅行商(T ...

  4. USACO 2008 January Silver Telephone Lines /// 二分最短路 邻接表dijkstra oj22924

    题目大意: 一共有N (1 ≤ N ≤ 1,000)个电线杆,有P P (1 ≤ P ≤ 10,000)对电线杆是可以连接的, 用几条线连接在一起的电线杆之间都可相互通信,现在想要使得电线杆1和电线杆 ...

  5. POJ-2387Til the Cows Come Home,最短路坑题,dijkstra+队列优化

    Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K       http://poj.org/problem?id=238 ...

  6. 确定比赛名次(map+邻接表 邻接表 拓扑结构 队列+邻接表)

    确定比赛名次 Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Submis ...

  7. POJ - 3037-Skiing(邻接表+Dijkstra)

    Bessie and the rest of Farmer John's cows are taking a trip this winter to go skiing. One day Bessie ...

  8. bfs 邻接表(需要优化 可能会RE *【模板】)

    //---基于邻接表的bfs #include <stdio.h> #include <string.h> #include <iostream> #include ...

  9. 08-图8 How Long Does It Take(25 分)邻接表和队列

    Given the relations of all the activities of a project, you are supposed to find the earliest comple ...

随机推荐

  1. 解析Android消息处理机制:Handler/Thread/Looper & MessageQueue

    解析Android消息处理机制 ——Handler/Thread/Looper & MessageQueue Keywords: Android Message HandlerThread L ...

  2. quicksort+binarySearch

    描述 数轴上有n个点,对于任一闭区间 [a, b],试计算落在其内的点数. 输入 第一行包括两个整数:点的总数n,查询的次数m. 第二行包含n个数,为各个点的坐标. 以下m行,各包含两个整数:查询区间 ...

  3. bp神经网络算法

    对于BP神经网络算法,由于之前一直没有应用到项目中,今日偶然之时 进行了学习, 这个算法的基本思路是这样的:不断地迭代优化网络权值,使得输入与输出之间的映射关系与所期望的映射关系一致,利用梯度下降的方 ...

  4. Ubuntu使用apt-get安装本地deb包

    我们都喜欢使用apt-get,因为它实在是让我们大大的省心.但是,有时候我们会为网速慢,安装源不好而烦恼,所以我们可能会将一些常用软件包的deb文件保存在本地以备不时之需.当然了使用dpkg也可以直接 ...

  5. 安卓接入ShareSDK问题

    平台图标错乱原因  导出的jar包 包括了 style.class R$attr.class MainActivity.class R$color.class R$drawable.class R$s ...

  6. Python 全栈开发 -- 开发环境篇

    开发环境是一个文本编辑器和 Python 解释器的组合.文本编辑器用来写代码,解释器提供了一种方法来运行编写的代码.一个文本编辑器可以像 Windows 上的 Notepad 一样简单,或是一个复杂的 ...

  7. TSS 任务状态段 详解

    http://blog.163.com/di_yang@yeah/blog/static/86118492201222210725146/1 什么是TSS TSS 全称task state segme ...

  8. SPRING IN ACTION 第4版笔记-第三章ADVANCING WIRING-008-SpEL介绍

    一. 1.SpEL expressions are framed with  #{ ... } 2.SpEl的作用 Sp EL has a lot of tricks up its sleeves, ...

  9. ip_conntrack 实现

    启动时首先在ip_conntrack_standalone.c中调用 static int __init ip_conntrack_standalone_init(void) //proc相关部分省略 ...

  10. 【HDOJ】1171 Big Event in HDU

    母函数,先要算搞清楚组合数可能的最大值.非常大.N种设备的最大VAL*最大数量. #include <stdio.h> #include <string.h> #define ...