Delay Constrained Maximum Capacity Path

Time Limit: 10000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 544    Accepted Submission(s): 192

Problem Description
Consider an undirected graph with N vertices, numbered from 1 to N, and M edges. The vertex numbered with 1 corresponds to a mine from where some precious minerals are extracted. The vertex numbered with N corresponds to a minerals processing factory. Each edge has an associated travel time (in time units) and capacity (in units of minerals). It has been decided that the minerals which are extracted from the mine will be delivered to the factory using a single path. This path should have the highest capacity possible, in order to be able to transport simultaneously as many units of minerals as possible. The capacity of a path is equal to the smallest capacity of any of its edges. However, the minerals are very sensitive and, once extracted from the mine, they will start decomposing after T time units, unless they reach the factory within this time interval. Therefore, the total travel time of the chosen path (the sum of the travel times of its edges) should be less or equal to T.

 
Input
The first line of input contains an integer number X, representing the number of test cases to follow. The first line of each test case contains 3 integer numbers, separated by blanks: N (2 <= N <= 10.000), M (1 <= M <= 50.000) and T (1 <= T <= 500.000). Each of the next M lines will contain four integer numbers each, separated by blanks: A, B, C and D, meaning that there is an edge between vertices A and B, having capacity C (1 <= C <= 2.000.000.000) and the travel time D (1 <= D <= 50.000). A and B are different integers between 1 and N. There will exist at most one edge between any two vertices.

 
Output
For each of the X test cases, in the order given in the input, print one line containing the highest capacity of a path from the mine to the factory, considering the travel time constraint. There will always exist at least one path between the mine and the factory obbeying the travel time constraint.

 
Sample Input
2
2 1 10
1 2 13 10
4 4 20
1 2 1000 15
2 4 999 6
1 3 100 15
3 4 99 4
 
Sample Output
13
99
 

题目:给m条管道,每条管道有可运输的最大容量和消耗的时间c,t

现在有东西要从1运输到n,必须在时间T内完成,求符合条件的可运输的最大容量

分析:对于所给的m条管道的最大容量,进行排序,然后二分容量求从1到n的最短时间即可

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<queue>
#include<algorithm>
#include<map>
#include<vector>
#include<iomanip>
#define INF 99999999
using namespace std; const int MAX=10000+10;
int s[MAX*5],n,m,t;
int size,head[MAX],dist[MAX];
bool mark[MAX];
typedef pair<int,int>mp; struct Edge{
int v,c,t,next;
Edge(){}
Edge(int &V,int &C,int &T,int NEXT):v(V),c(C),t(T),next(NEXT){}
}edge[MAX*5*2]; inline void Init(int num){
memset(head,-1,sizeof(int)*(num+2));
size=0;
} inline void InsertEdge(int u,int v,int &c,int &t){
edge[size]=Edge(v,c,t,head[u]);//头插法
head[u]=size++;
} inline bool Dijkstra(int s,int t,int c,int T){
for(int i=1;i<=n;++i)mark[i]=false,dist[i]=INF;
dist[s]=0,mark[s]=true;
priority_queue< mp,vector<mp>,greater<mp> >q;
mp oq;
q.push(mp(0,s));
while(!q.empty()){
oq=q.top();
q.pop();
if(oq.first>T)return false;
if(oq.second == t)return dist[t];//dist[t]<=T;
mark[oq.second]=true;
for(int i=head[oq.second];i != -1;i=edge[i].next){
int v=edge[i].v;
if(mark[v] || edge[i].c<c)continue;
if(oq.first+edge[i].t<dist[v]){
dist[v]=oq.first+edge[i].t;
q.push(mp(dist[v],v));
}
}
}
return false;//无法到达t
} int main(){
int num,u,v,c,T;
cin>>num;
while(num--){
scanf("%d%d%d",&n,&m,&t);
Init(n);
for(int i=0;i<m;++i){
scanf("%d%d%d%d",&u,&v,&c,&T);
InsertEdge(u,v,c,T);
InsertEdge(v,u,c,T);
s[i]=c;
}
sort(s,s+m);
int left=0,right=0,mid;
for(int i=1;i<m;++i)if(s[i] != s[i-1])s[++right]=s[i];
while(left<=right){
mid=left+right>>1;
if(Dijkstra(1,n,s[mid],t))left=mid+1;
else right=mid-1;
}
printf("%d\n",s[right]);
}
return 0;
}

hdu1839之二分+邻接表+Dijkstra+队列优化的更多相关文章

  1. POJ 1511 - Invitation Cards 邻接表 Dijkstra堆优化

    昨天的题太水了,堆优化跑的不爽,今天换了一个题,1000000个点,1000000条边= = 试一试邻接表 写的过程中遇到了一些问题,由于习惯于把数据结构封装在 struct 里,结果 int [10 ...

  2. HDU 2544 最短路(floyd+bellman-ford+spfa+dijkstra队列优化)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544 题目大意:找点1到点n的最短路(无向图) 练一下最短路... dijkstra+队列优化: #i ...

  3. ACM/ICPC 之 数据结构-邻接表+DP+队列+拓扑排序(TSH OJ-旅行商TSP)

    做这道题感觉异常激动,因为在下第一次接触拓扑排序啊= =,而且看了看解释,猛然发现此题可以用DP优化,然后一次A掉所有样例,整个人激动坏了,哇咔咔咔咔咔咔咔~ 咔咔~哎呀,笑岔了- -|| 旅行商(T ...

  4. USACO 2008 January Silver Telephone Lines /// 二分最短路 邻接表dijkstra oj22924

    题目大意: 一共有N (1 ≤ N ≤ 1,000)个电线杆,有P P (1 ≤ P ≤ 10,000)对电线杆是可以连接的, 用几条线连接在一起的电线杆之间都可相互通信,现在想要使得电线杆1和电线杆 ...

  5. POJ-2387Til the Cows Come Home,最短路坑题,dijkstra+队列优化

    Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K       http://poj.org/problem?id=238 ...

  6. 确定比赛名次(map+邻接表 邻接表 拓扑结构 队列+邻接表)

    确定比赛名次 Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Submis ...

  7. POJ - 3037-Skiing(邻接表+Dijkstra)

    Bessie and the rest of Farmer John's cows are taking a trip this winter to go skiing. One day Bessie ...

  8. bfs 邻接表(需要优化 可能会RE *【模板】)

    //---基于邻接表的bfs #include <stdio.h> #include <string.h> #include <iostream> #include ...

  9. 08-图8 How Long Does It Take(25 分)邻接表和队列

    Given the relations of all the activities of a project, you are supposed to find the earliest comple ...

随机推荐

  1. <三> jQuery 选择器

    jQuery 选择器选择需要应用效果的元素,jQuery 元素选择器和属性选择器允许您通过标签名.属性名或内容对 HTML 元素进行选择.选择器允许您对 HTML 元素组或单个元素进行操作. 元素选择 ...

  2. sass教程汇总

    Sass @at-root http://www.w3cplus.com/preprocessor/Sass-3-3-new-feature-at-root-bem.html Sass中连体符(&am ...

  3. 在C#中关于excel的导入和导出操作

    一.先来看看最常见的导入操作吧! private void Import() { //打开excel选择框 OpenFileDialog frm = new OpenFileDialog(); frm ...

  4. [转载]C# HashTable 遍历与排序

    private void Form1_Load(object sender, EventArgs e) { Hashtable ht = new Hashtable(); ht.Add("j ...

  5. 10个基于 Ruby on Rails 构建的顶级站点

    本文系国内 ITOM 行业领军企业 OneAPM 工程师翻译整理自 Raviraj Hegde 的文章 Top Sites Built with Ruby on Rails. 就其本身而言,Ruby ...

  6. 开启CURL扩展,让服务器支持PHP curl函数(远程采集)

    关于开启Curl的方法模板天下小编在此给大家简单说一下 curl().file_get_contents().snoopy.class.php这三个远程页面抓取或采集中用到的工具,默迹还是侵向于用sn ...

  7. 基于FFmpeg和Qt的播放器 QtAV库

    http://blog.csdn.net/ibingow/article/details/8144795

  8. eCos驱动分析 之 ISR是如何与硬件中断联系起来的?

    http://keendawn.blog.163.com/blog/static/8888074320116205833478/

  9. cyg_flag 系列函数

    http://blog.csdn.net/mrwangwang/article/details/7954236 cyg_flag_init Name: cyg_flag_init ( ) - init ...

  10. Django单元测试(一)

    Django测试框架非常简单,首选方法是使用python标准库中的unittest模块. Writing tests Django的单元测试使用python的unittest模块,这个模块使用基于类的 ...