题目描述

求一个数列本质不同的至少含有两个元素的上升子序列数目模10^9+7的结果。


题解

树状数组

傻逼题,离散化后直接使用树状数组统计即可。由于要求本质不同,因此一个数要减去它前一次出现时的贡献(即以它上一次出现的位置为最后一个元素的上升子序列数目)统计到答案中。

由于要包含至少两个元素,因此还需要减掉不同数的数目。

时间复杂度 $O(n\log n)$

#include <cstdio>
#include <algorithm>
#define N 100010
#define mod 1000000007
using namespace std;
int n , a[N] , v[N] , pos[N] , last[N] , val[N] , f[N];
inline void add(int x , int a)
{
int i;
for(i = x ; i <= n ; i += i & -i)
f[i] = (f[i] + a) % mod;
}
inline int query(int x)
{
int i , ans = 0;
for(i = x ; i ; i -= i & -i)
ans = (ans + f[i]) % mod;
return ans;
}
int main()
{
int i , sum = 0;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &a[i]) , v[i] = a[i];
sort(v + 1 , v + n + 1);
for(i = 1 ; i <= n ; i ++ )
{
a[i] = lower_bound(v + 1 , v + n + 1 , a[i]) - v;
if(!pos[a[i]]) sum ++ ;
last[i] = pos[a[i]] , pos[a[i]] = i;
}
for(i = 1 ; i <= n ; i ++ ) val[i] = query(a[i] - 1) + 1 , add(a[i] , (val[i] - val[last[i]] + mod) % mod);
printf("%d\n" , (query(n) - sum + mod) % mod);
return 0;
}

【bzoj5157】[Tjoi2014]上升子序列 树状数组的更多相关文章

  1. bzoj5157: [Tjoi2014]上升子序列(树状数组LIS)

    5157: [Tjoi2014]上升子序列 题目:传送门 题解: 学一下nlogn的树状数组求最长上生子序列就ok(%爆大佬) 离散化之后,用一个数组记录一下,直接树状数组做 吐槽:妈耶...一开始不 ...

  2. CF452F Permutations/Luogu2757 等差子序列 树状数组、Hash

    传送门--Luogu 传送门--Codeforces 如果存在长度\(>3\)的等差子序列,那么一定存在长度\(=3\)的等差子序列,所以我们只需要找长度为\(3\)的等差子序列.可以枚举等差子 ...

  3. bzoj 2124 等差子序列 树状数组维护hash+回文串

    等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 1919  Solved: 713[Submit][Status][Discuss] Desc ...

  4. 【BZOJ2124】等差子序列 树状数组维护hash值

    [BZOJ2124]等差子序列 Description 给一个1到N的排列{Ai},询问是否存在1<=p1<p2<p3<p4<p5<…<pLen<=N ...

  5. Maximum Subsequence Sum【最大连续子序列+树状数组解决】

    Problem Description 给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i < ...

  6. BZOJ 3173 最长上升子序列(树状数组+二分+线段树)

    给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? 由于序列是顺序插入的,所以当前插入的数字对之 ...

  7. hdu 5773 The All-purpose Zero 最长上升子序列+树状数组

    题目链接:hdu 5773 The All-purpose Zero 官方题解:0可以转化成任意整数,包括负数,显然求LIS时尽量把0都放进去必定是正确的. 因此我们可以把0拿出来,对剩下的做O(nl ...

  8. bzoj3173: [Tjoi2013]最长上升子序列(树状数组+二分倒推)

    3173: [Tjoi2013]最长上升子序列 题目:传送门 题解:  好题! 怎么说吧...是应该扇死自己...看错了两次题: 每次加一个数的时候,如果当前位置有数了,是要加到那个数的前面,而不是直 ...

  9. 洛谷p1637 三元上升子序列(树状数组

    题目描述 Erwin最近对一种叫"thair"的东西巨感兴趣... 在含有n个整数的序列a1,a2......an中, 三个数被称作"thair"当且仅当i&l ...

随机推荐

  1. [2016北京集训测试赛5]小Q与内存-[线段树的神秘操作]

    Description Solution 哇真的异常服气..线段树都可以搞合并和拆分的啊orzorz.神的世界我不懂 Code #include<iostream> #include< ...

  2. DOM练手讲解

    先上代码,大家贴入看一下 <body> <select id="slc" size="7"></select> <in ...

  3. python根据正则表达式的简单爬虫

    今天根据正则表达式简单的爬了一下大众点评,把北京的美食爬了爬,(店铺名,人均消费,地址) import re import urllib.request from urllib.request imp ...

  4. selenium自动化之稳定版本环境介绍

    大家都知道,目前selenium版本已经升级到3.0了,selenium3只是在selenium2的基础上做了一些调整,最明显的区别就是 selenium2对Firefox的支持最高只支持46及以下版 ...

  5. hdfs向hbase上传数据报错分析

    通过hbse的import工具向hbase导入文件时出现出错误: hbase org.apache.hadoop.hbase.mapreduce.Driver import hbase_rgrid_k ...

  6. OA系统与Exchange 日历打通

    目前我碰到好几个案例是希望将客户以后的OA系统与Exchange中的日历系统相结合,比如致远或者泛微的OA系统. 客户的需求如下: 1.有了OA系统 2.客户使用Outlook当邮件客户端 3.客户希 ...

  7. RNN: Feed Forward, Back Propagation Through Time and Truncated Backpropagation Through Time

    原创作品,转载请注明出处哦~ 了解RNN的前向.后向传播算法的推导原理是非常重要的,这样, 1. 才会选择正确的激活函数: 2. 才会选择合适的前向传播的timesteps数和后向传播的timeste ...

  8. 5个最优秀的微信小程序UI组件库

    开发微信小程序的过程中,选择一款好用的组件库,可以达到事半功倍的效果.自从微信小程序面世以来,不断有一些开源组件库出来,下面5款就是排名比较靠前,用户使用量与关注度比较高的小程序UI组件库.还没用到它 ...

  9. spark的运行方式——转载

    本文转载自:      spark的运行方式 本文主要讲述运行spark程序的几种方式,包括:本地测试.提交到集群运行.交互式运行 等. 在以下几种执行spark程序的方式中,都请注意master的设 ...

  10. 经验之谈:10位顶级PHP大师的开发原则

    导读:在Web开发世界里,PHP是最流行的语言之一,从PHP里,你能够很容易的找到你所需的脚本,遗憾的是,很少人会去用“最佳做法”去写一个PHP程序.这里,我们向大家介绍PHP的10种最佳实践,当然, ...