在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大。

题解:先求出凸包,O(n)枚举旋转卡壳,O(n)枚举另一个点,求最大四边形面积

/**************************************************************
Problem: 1069
User: walfy
Language: C++
Result: Accepted
Time:892 ms
Memory:1360 kb
****************************************************************/ //#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 10007
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define fio ios::sync_with_stdio(false);cin.tie(0) using namespace std; const double eps=1e-;
const int N=+,maxn=+,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f; struct point{
ll x,y;
};
point p[N],s[N];
int top,n;
ll dir(point p1,point p2,point p3)
{
return (p3.x-p2.x)*(p2.y-p1.y)-(p3.y-p2.y)*(p2.x-p1.x);
}
ll dis(point a,point b)
{
return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
}
ll area(point p1,point p2,point p3)
{
return fabs(dir(p1,p2,p3));
}
bool cmp(point a,point b)
{
ll te=dir(p[],a,b);
if(te<)return ;
if(te==&&dis(p[],a)<dis(p[],b))return ;
return ;
}
void graham()
{
int pos,minx,miny;
minx=miny=inf;
for(int i=;i<n;i++)
{
if(p[i].x<minx||(p[i].x==minx&&p[i].y<miny))
{
minx=p[i].x;
miny=p[i].y;
pos=i;
}
}
swap(p[],p[pos]);
sort(p+,p+n,cmp);
p[n]=p[];
s[]=p[],s[]=p[],s[]=p[];
top=;
for(int i=;i<=n;i++)
{
while(dir(s[top-],s[top],p[i])>=&&top>=)top--;
s[++top]=p[i];
}
ll ans=;
for(int i=;i<top;i++)
{
int j,a1=(i+)%top,a2=(i+)%top;
for(j=(i+)%top;j!=i;j=(j+)%top)
{
while(a1!=j&&area(s[(a1+)%top],s[i],s[j])>=area(s[a1],s[i],s[j]))a1=(a1+)%top;
while(a2!=i&&area(s[(a2+)%top],s[i],s[j])>=area(s[a2],s[i],s[j]))a2=(a2+)%top;
ans=max(ans,area(s[a1],s[i],s[j])+area(s[a2],s[i],s[j]));
}
}
printf("%.3f\n",1.0*ans/);
}
int main()
{
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%lld%lld",&p[i].x,&p[i].y);
graham();
return ;
}
/******************** ********************/

bzoj1069: [SCOI2007]最大土地面积 凸包+旋转卡壳求最大四边形面积的更多相关文章

  1. [BZOJ1069][SCOI2007]最大土地面积 凸包+旋转卡壳

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3669  Solved: 1451[Submit][Sta ...

  2. luogu P4166 [SCOI2007]最大土地面积 凸包 旋转卡壳

    LINK:最大土地面积 容易想到四边形的边在凸包上面 考虑暴力枚举凸包上的四个点计算面积. 不过可以想到可以直接枚举对角线的两个点找到再在两边各找一个点 这样复杂度为\(n^3\) 可以得到50分. ...

  3. bzoj 1069: [SCOI2007]最大土地面积 凸包+旋转卡壳

    题目大意: 二维平面有N个点,选择其中的任意四个点使这四个点围成的多边形面积最大 题解: 很容易发现这四个点一定在凸包上 所以我们枚举一条边再旋转卡壳确定另外的两个点即可 旋(xuan2)转(zhua ...

  4. hdu 3934&&poj 2079 (凸包+旋转卡壳+求最大三角形面积)

    链接:http://poj.org/problem?id=2079 Triangle Time Limit: 3000MS   Memory Limit: 30000K Total Submissio ...

  5. BZOJ1069 SCOI2007 最大土地面积 凸包、旋转卡壳

    传送门 在这里假设可以选择两个相同的点吧-- 那么选出来的四个点一定会在凸包上 建立凸包,然后枚举这个四边形的对角线.策略是先枚举对角线上的一个点,然后沿着凸包枚举另一个点.在枚举另一个点的过程中可以 ...

  6. bzoj 1069 [SCOI2007]最大土地面积(旋转卡壳)

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2277  Solved: 853[Submit][Stat ...

  7. 【BZOJ 1069】【SCOI 2007】最大土地面积 凸包+旋转卡壳

    因为凸壳上对踵点的单调性所以旋转卡壳线性绕一圈就可以啦啦啦--- 先求凸包,然后旋转卡壳记录$sum1$和$sum2$,最后统计答案就可以了 #include<cmath> #includ ...

  8. [SCOI2007]最大土地面积(旋转卡壳)

    首先,最大四边形的四个点一定在凸包上 所以先求凸包 有个结论,若是随机数据,凸包包括的点大约是\(\log_2n\)个 然鹅,此题绝对不会这么轻松,若\(O(n^4)\)枚举,只有50分 所以还是要想 ...

  9. UVA 4728 Squares(凸包+旋转卡壳)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17267 [思路] 凸包+旋转卡壳 求出凸包,用旋转卡壳算出凸包的直 ...

随机推荐

  1. 焦作网络赛B-Mathematical Curse【dp】

    A prince of the Science Continent was imprisoned in a castle because of his contempt for mathematics ...

  2. ubuntu16.04下安装opencv3的viz模块

    OPENCV3.0默认是不安装VIZ模块的,那么如何安装呢? 如果已经安装了Opencv,现在要增加VIZ模块,应该再安装一次就可以吧,我没试过,我是卸载了原来的,重新安装的 简单来说,就是要多安装一 ...

  3. Drools规则引擎

    一.简介 Drools is a Business Rules Management System (BRMS) solution. It provides a core Business Rules ...

  4. Oracle管理监控之Oracle数据库存储空间监控

    1.监控表空间使用率 基表:dba_data_files.dba_free_space 脚本: select a.tablespace_name, round((a.maxbytes / 1024 / ...

  5. Jscript运行时错误:没有权限

    问题:我在页面A中放了一个iframe ,然后在iframe 的子页面中调用主页面中的JavaScript函数,结果报错Jscript运行时错误:没有权限 原因有2: 1. 是逻辑错误,比如先关闭了i ...

  6. poj 2723 Get Luffy Out 2-SAT

    两个钥匙a,b是一对,隐含矛盾a->!b.b->!a 一个门上的两个钥匙a,b,隐含矛盾!a->b,!b->a(看数据不大,我是直接枚举水的,要打开当前门,没选a的话就一定要选 ...

  7. Grid Search学习

    转自:https://www.cnblogs.com/ysugyl/p/8711205.html Grid Search:一种调参手段:穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性 ...

  8. C# Winform backgroundWorker组件使用

    BackgroundWorker 组件用来执行诸如数据库事务.文件下载等耗时的异步操作. 开始 在应用程序中添加一个BackgroundWorker实例,如果用的是VS,可以从工具上直接拖到应用程序: ...

  9. 2.JVM运行机制 -- JVM序列

    上一次写了1.初步认识JVM -- JVM序列,今天接着记录写JVM的运行机制. 一.JVM启动流程 Java平台包括JVM以及Java语言,其中JVM也是运行在操作系统中的一个应用程序进程,那么也应 ...

  10. And Design:拓荒笔记——Form表单

    And Design:拓荒笔记——Form表单 Form.create(options) Form.create()可以对包含Form表单的组件进行改造升级,会返回一个新的react组件. 经 For ...