在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大。

题解:先求出凸包,O(n)枚举旋转卡壳,O(n)枚举另一个点,求最大四边形面积

/**************************************************************
Problem: 1069
User: walfy
Language: C++
Result: Accepted
Time:892 ms
Memory:1360 kb
****************************************************************/ //#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 10007
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define fio ios::sync_with_stdio(false);cin.tie(0) using namespace std; const double eps=1e-;
const int N=+,maxn=+,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f; struct point{
ll x,y;
};
point p[N],s[N];
int top,n;
ll dir(point p1,point p2,point p3)
{
return (p3.x-p2.x)*(p2.y-p1.y)-(p3.y-p2.y)*(p2.x-p1.x);
}
ll dis(point a,point b)
{
return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
}
ll area(point p1,point p2,point p3)
{
return fabs(dir(p1,p2,p3));
}
bool cmp(point a,point b)
{
ll te=dir(p[],a,b);
if(te<)return ;
if(te==&&dis(p[],a)<dis(p[],b))return ;
return ;
}
void graham()
{
int pos,minx,miny;
minx=miny=inf;
for(int i=;i<n;i++)
{
if(p[i].x<minx||(p[i].x==minx&&p[i].y<miny))
{
minx=p[i].x;
miny=p[i].y;
pos=i;
}
}
swap(p[],p[pos]);
sort(p+,p+n,cmp);
p[n]=p[];
s[]=p[],s[]=p[],s[]=p[];
top=;
for(int i=;i<=n;i++)
{
while(dir(s[top-],s[top],p[i])>=&&top>=)top--;
s[++top]=p[i];
}
ll ans=;
for(int i=;i<top;i++)
{
int j,a1=(i+)%top,a2=(i+)%top;
for(j=(i+)%top;j!=i;j=(j+)%top)
{
while(a1!=j&&area(s[(a1+)%top],s[i],s[j])>=area(s[a1],s[i],s[j]))a1=(a1+)%top;
while(a2!=i&&area(s[(a2+)%top],s[i],s[j])>=area(s[a2],s[i],s[j]))a2=(a2+)%top;
ans=max(ans,area(s[a1],s[i],s[j])+area(s[a2],s[i],s[j]));
}
}
printf("%.3f\n",1.0*ans/);
}
int main()
{
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%lld%lld",&p[i].x,&p[i].y);
graham();
return ;
}
/******************** ********************/

bzoj1069: [SCOI2007]最大土地面积 凸包+旋转卡壳求最大四边形面积的更多相关文章

  1. [BZOJ1069][SCOI2007]最大土地面积 凸包+旋转卡壳

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3669  Solved: 1451[Submit][Sta ...

  2. luogu P4166 [SCOI2007]最大土地面积 凸包 旋转卡壳

    LINK:最大土地面积 容易想到四边形的边在凸包上面 考虑暴力枚举凸包上的四个点计算面积. 不过可以想到可以直接枚举对角线的两个点找到再在两边各找一个点 这样复杂度为\(n^3\) 可以得到50分. ...

  3. bzoj 1069: [SCOI2007]最大土地面积 凸包+旋转卡壳

    题目大意: 二维平面有N个点,选择其中的任意四个点使这四个点围成的多边形面积最大 题解: 很容易发现这四个点一定在凸包上 所以我们枚举一条边再旋转卡壳确定另外的两个点即可 旋(xuan2)转(zhua ...

  4. hdu 3934&&poj 2079 (凸包+旋转卡壳+求最大三角形面积)

    链接:http://poj.org/problem?id=2079 Triangle Time Limit: 3000MS   Memory Limit: 30000K Total Submissio ...

  5. BZOJ1069 SCOI2007 最大土地面积 凸包、旋转卡壳

    传送门 在这里假设可以选择两个相同的点吧-- 那么选出来的四个点一定会在凸包上 建立凸包,然后枚举这个四边形的对角线.策略是先枚举对角线上的一个点,然后沿着凸包枚举另一个点.在枚举另一个点的过程中可以 ...

  6. bzoj 1069 [SCOI2007]最大土地面积(旋转卡壳)

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2277  Solved: 853[Submit][Stat ...

  7. 【BZOJ 1069】【SCOI 2007】最大土地面积 凸包+旋转卡壳

    因为凸壳上对踵点的单调性所以旋转卡壳线性绕一圈就可以啦啦啦--- 先求凸包,然后旋转卡壳记录$sum1$和$sum2$,最后统计答案就可以了 #include<cmath> #includ ...

  8. [SCOI2007]最大土地面积(旋转卡壳)

    首先,最大四边形的四个点一定在凸包上 所以先求凸包 有个结论,若是随机数据,凸包包括的点大约是\(\log_2n\)个 然鹅,此题绝对不会这么轻松,若\(O(n^4)\)枚举,只有50分 所以还是要想 ...

  9. UVA 4728 Squares(凸包+旋转卡壳)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17267 [思路] 凸包+旋转卡壳 求出凸包,用旋转卡壳算出凸包的直 ...

随机推荐

  1. IIS 6.0上部署ASP.NET MVC2.0

    在IIS7.5及8.0上部署都没有成功,对于身份验证会出现问题,据说是要安装什么东西,在这里说下IIS6.0的配置吧,下面是使用.net 4.0,自己可以选择所需的版本. 再此之前先确定web是用到了 ...

  2. FZU 2098 刻苦的小芳(卡特兰数,动态规划)

    Problem 2098 刻苦的小芳 Accept: 42 Submit: 70 Time Limit: 1000 mSec Memory Limit : 32768 KB Problem Descr ...

  3. go 工具链目前[不支持编译 windows 下的动态链接库]解决方案

    go 工具链目前[不支持编译 windows 下的动态链接库][1],不过[支持静态链接库][2].想要产生dll,可以这样 workaround ,参考 golang [issuse#11058][ ...

  4. Nginx反向代理服务器安装与配置

    一.服务器安装: sudo yum install gcc-c++ sudo yum install pcre pcre-devel sudo yum install zlib zlib-devel ...

  5. (转)《SSO CAS单点系列》之 实现一个SSO认证服务器是这样的!

    上篇我们引入了SSO这个话题<15分钟了解SSO是个什么鬼!>.本篇我们一步步深入分析SSO实现机理,并亲自动手实现一个线上可用的SSO认证服务器!首先,我们来分析下单Web应用系统登录登 ...

  6. STL学习笔记--各种容器的运用时机

    如何选择最佳的容器类别? 缺省情况下应该使用vector.vector的内部结构简单,并允许随机存取,所以数据的存取十分方便灵活,数据的处理也够快. 如果经常要在序列的头部和尾部安插和移除元素,应采用 ...

  7. mysql++使用

    Mysql++是官方发布的.一个为MySQL设计的C++语言的API.Mysql++为Mysql的C-Api的再次封装,它用STL(Standard Template Language)开发并编写,并 ...

  8. (15)如何使用Cocos2d-x 3.0制作基于tilemap的游戏:第三部分(完)

    引言 程序截图: 在第二部分教程中,Ray教大家如何在地图中制作可碰撞的区域,如何使用tile属性,如何制作可以拾取的物品以及如何动态修改地图.如何使用“Heads up display”来显示分数. ...

  9. js中var a={}什么意思

    创建一个变量a, 并给a赋值:{}是一个空的对象,是 new Object();的简写.

  10. Linux常用命令实践

    一.开机自动挂载文件系统设置 在/media下新建RHEL目录,并把/dev/sr1第二块光驱挂载到该目录 #mkdir /media/RHEL #mount /dev/sr1 /media/RHEL ...