题目大意:给一张无向图,找出最小生成树和次小生成树。

题目分析:模板题。。。方法就是枚举所有的比最小生成树中两端点之间的最长边还要长的边,用它替换,再取一个最小的值便是次小生成树了。

代码如下:

# include<iostream>
# include<cstdio>
# include<cstring>
# include<cstring>
using namespace std;
# define REP(i,s,n) for(int i=s;i<n;++i)
# define CL(a,b) memset(a,b,sizeof(a))
# define CLL(a,b,n) fill(a,a+n,b) const int N=105;
const int INF=1<<30;
int n,m,dis[N],dp[N][N],G[N][N],G1[N][N],vis[N]; int prim()
{
REP(i,0,n) REP(j,i,n) G1[i][j]=G1[j][i]=INF;
CLL(dis,INF,n);
CL(vis,0);
REP(i,0,n) dis[i]=G[0][i];
dis[0]=0;
vis[0]=1;
int res=0;
REP(k,1,n){
int minn=INF,u;
REP(i,0,n) if(!vis[i]&&minn>dis[i]){
minn=dis[i];
u=i;
}
res+=dis[u];
vis[u]=1;
REP(i,0,n) if(vis[i]&&G[i][u]==dis[u]){
G1[i][u]=G1[u][i]=dis[u];
break;
}
REP(i,0,n) if(!vis[i]&&dis[i]>G[u][i])
dis[i]=G[u][i];
}
return res;
} void dfs(int rt,int u,int w)
{
if(dp[rt][u]!=-1) return ;
dp[rt][u]=w;
REP(i,0,n) if(G1[u][i]!=INF)
dfs(rt,i,max(w,G1[u][i]));
} int main()
{
int T,a,b,c;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
REP(i,0,n) REP(j,i,n) G[i][j]=G[j][i]=INF;
while(m--)
{
scanf("%d%d%d",&a,&b,&c);
--a,--b;
G[a][b]=G[b][a]=c;
}
int MST=prim();
CL(dp,-1);
REP(i,0,n) dfs(i,i,0);
int MST1=INF;
REP(i,0,n) REP(j,i+1,n){
if(G[i][j]==INF||G1[i][j]<INF||G[i][j]<dp[i][j]) continue;
MST1=min(MST1,MST-dp[i][j]+G[i][j]);
}
printf("%d %d\n",MST,MST1);
}
return 0;
}

  

UVA-10600 ACM Contest and Blackout (次小生成树)的更多相关文章

  1. UVA 10600 ACM Contest and Blackout 次小生成树

    又是求次小生成树,就是求出最小生成树,然后枚举不在最小生成树上的每条边,求出包含着条边的最小生成树,然后取一个最小的 #include <iostream> #include <al ...

  2. [ An Ac a Day ^_^ ] [kuangbin带你飞]专题八 生成树 UVA 10600 ACM Contest and Blackout 最小生成树+次小生成树

    题意就是求最小生成树和次小生成树 #include<cstdio> #include<iostream> #include<algorithm> #include& ...

  3. uva 10600 ACM Contest And Blackout

    题意: 求最小生成树和次小生成树的总权值. 思路: 第一种做法,适用于规模较小的时候,prim算法进行的时候维护在树中两点之间路径中边的最大值,复杂度O(n^2),枚举边O(m),总复杂度O(n^2) ...

  4. UVA10600 ACM Contest and Blackout —— 次小生成树

    题目链接:https://vjudge.net/problem/UVA-10600 In order to prepare the “The First National ACM School Con ...

  5. UVA10600:ACM Contest and Blackout(次小生成树)

    ACM Contest and Blackout 题目链接:https://vjudge.net/problem/UVA-10600 Description: In order to prepare ...

  6. 【UVA 10600】 ACM Contest and Blackout(最小生成树和次小生成树)

    [题意] n个点,m条边,求最小生成树的值和次小生成树的值. InputThe Input starts with the number of test cases, T (1 < T < ...

  7. 【uva 10600】ACM Contest and Blackout(图论--次小生成树 模版题)

    题意:有T组数据,N个点,M条边,每条边有一定的花费.问最小生成树和次小生成树的权值. 解法:具体请见 关于生成树的拓展 {附[转]最小瓶颈路与次小生成树}(图论--生成树) 1 #include&l ...

  8. UVA10600 ACM Contest and Blackout

    用prim算法求最小生成树和次小生成树~ #include<cstdio> #include<algorithm> #include<cstring> using ...

  9. kuangbin带你飞 生成树专题 : 次小生成树; 最小树形图;生成树计数

    第一个部分 前4题 次小生成树 算法:首先如果生成了最小生成树,那么这些树上的所有的边都进行标记.标记为树边. 接下来进行枚举,枚举任意一条不在MST上的边,如果加入这条边,那么肯定会在这棵树上形成一 ...

随机推荐

  1. Fast and Accurate Traffic Matrix Measurement Using Adaptive Cardinality Counting

    paper-CaiPan.pdf http://conferences.sigcomm.org/sigcomm/2005/paper-CaiPan.pdf

  2. 升级mac xcode打包证书报错 git 报错

    reset tryAgain git 在钥匙串中找不到指定的项  重新配置公钥撕咬 SSH keys An SSH key allows you to establish a secure conne ...

  3. docker 数据管理数据卷

    1,数据卷 数据卷是一个可供容器使用特殊目录,他将主机操作系统目录直接映射容器 1,在容器内创建一个数据卷 在使用docker run命令的时候,使用-v标记就可以创建一个数据卷,多次重复使用-v可以 ...

  4. idea一个类中,各个修饰符的符号表示

    1: 2:

  5. Hive重写表数据丢失风险记录

    若在Hive中执行INSERT OVERWRITE重写同一个表的数据时,有可能会造成数据丢失. 如 INSERT OVERWRITE TABLE table_name SELECT * FROM ta ...

  6. HDU1757:A Simple Math Problem(矩阵快速幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=1757 Problem Description Lele now is thinking about a simp ...

  7. java对象,引用的区别

    一,其实 对象 就是一个类的实例 在Java中有一句比较流行的话,叫做“万物皆对象”,这是Java语言设计之初的理念之一.要理解什么是对象,需要跟类一起结合起来理解.下面这段话引自<Java编程 ...

  8. 883. Projection Area of 3D Shapes

    问题 NxN个格子中,用1x1x1的立方体堆叠,grid[i][j]表示坐标格上堆叠的立方体个数,求三视图面积. Input: [[1,2],[3,4]] Output: 17 Explanation ...

  9. Refactoring #002 Inline Method

    Example private ServerSocket createServerSocket(final int port) throws IOException { ServerSocket re ...

  10. RESTful源码笔记之RESTful Framework的APIview, Viewset总结分析

    0x00  引言 官方文档:http://www.django-rest-framework.org/drf为我们提供强大的通用view的功能,本博客对这些view进行简要的总结分析.首先,我们看一下 ...