Description

给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走。问至少走多少次才能将财宝捡完。此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少次才能把财宝全部捡完。

Input

第一行为正整数T,代表数据组数。

每组数据第一行为正整数N,M代表网格图有N行M列,接下来N行每行M个非负整数,表示此格子中财宝数量,0代表没有

Output

输出一个整数,表示至少要走多少次。

Sample Input

1
3 3
0 1 5
5 0 0
1 0 0

Sample Output

10

HINT

N<=1000,M<=1000.每个格子中财宝数不超过10^6

Solution

由$Dilworth$定理可知,最小链覆盖=最大反链=最大独立集
当时我就懵逼了……啥是反链啊?……
链是一个点的集合,这个集合中任意两个元素$v$、$u$,要么$v$能走到$u$,要么$u$能走到$v$。
反链就是是一个点的集合,这个集合中任意两点谁也不能走到谁。= =
那么左上角为$(1,1)$,右下角为$(n,m)$,设$f[i][j]$表示矩形$(i,j),(1,m)$内的最长反链。
$f[i][j]=max(f[i][j+1],f[i-1][j],f[i-1][j+1]+a[i][j])$

Code

 #include<iostream>
#include<cstring>
#include<cstdio>
#define N (1009)
using namespace std; int T,n,m,a[N][N],f[N][N]; int main()
{
scanf("%d",&T);
while (T--)
{
memset(f,,sizeof(f));
scanf("%d%d",&n,&m);
for (int i=; i<=n; ++i)
for (int j=; j<=m; ++j)
scanf("%d",&a[i][j]);
for (int i=; i<=n; ++i)
for (int j=m; j>=; --j)
f[i][j]=max(max(f[i][j+],f[i-][j]),f[i-][j+]+a[i][j]);
printf("%d\n",f[n][]);
}
}

BZOJ3997:[TJOI2015]组合数学(DP,Dilworth定理)的更多相关文章

  1. BZOJ3997 [TJOI2015]组合数学 【Dilworth定理】

    题目 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少 ...

  2. [BZOJ3997][TJOI2015]组合数学(Dilworth定理+DP)

    题目名字是什么就不能往那方面想. 每个点拆成a[i][j]个,问题变为DAG最小路径覆盖,由Dilworth定理转成最长反链. 使用Dilworth定理的时候要注意那些点之间有边,这里任意一个点和其右 ...

  3. BZOJ3997 TJOI2015组合数学(动态规划)

    copy: Dilworth定理:DAG的最小链覆盖=最大点独立集 最小链覆盖指选出最少的链(可以重复)使得每个点都在至少一条链中 最大点独立集指最大的集合使集合中任意两点不可达 此题中独立的定义即是 ...

  4. BZOJ3997: [TJOI2015]组合数学(网络流)

    3997: [TJOI2015]组合数学 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 405  Solved: 284[Submit][Status ...

  5. BZOJ.4160.[NEERC2009]Exclusive Access 2(状压DP Dilworth定理)

    BZOJ DAG中,根据\(Dilworth\)定理,有 \(最长反链=最小链覆盖\),也有 \(最长链=最小反链划分数-1\)(这个是指最短的最长链?并不是很确定=-=),即把所有点划分成最少的集合 ...

  6. bzoj3997[TJOI2015]组合数学(求最长反链的dp)

    组合数学 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走 ...

  7. bzoj3997[TJOI2015]组合数学

    http://www.lydsy.com/JudgeOnline/problem.php?id=3997 偏序集,看上一篇随笔. 我们要求最少路径覆盖,可以等价于求最大独立集. 我们要找到一个权值和最 ...

  8. bzoj千题计划298:bzoj3997: [TJOI2015]组合数学

    http://www.lydsy.com/JudgeOnline/problem.php?id=3997 最小链覆盖=最长反链长度 所以题目等价于寻找一条从右上角到左下角的最长路 #include&l ...

  9. P1020 导弹拦截 /// DP Dilworth定理 LIS、LDS优化

    题目大意: https://www.luogu.org/problemnew/show/P1020 Dliworth有两个互相对偶的定理:U的链划分使用的最少集合数,等于它的最大反链长度.(1)U的反 ...

随机推荐

  1. 使用VScode 的插件

    使用vscode的插件实现快捷开发 ASP.NET Core Snippets  :HomeController, Startup, ProgramFile and many more starts ...

  2. [javaSE] 集合框架(Map概述)

    Map集合,将key对象映射到value对象 三个主要的子类:Hashtable,HashMap,TreeMap Hashtable:底层是哈希表数据结构,不允许使用null值,线程同步 HashMa ...

  3. [javaSE] GUI(图形用户界面)

    java为gui提供的对象都在java.Awt和javax.Swing包中 Awt:抽象窗口工具包,依赖平台,调用系统的本地方法 Swing:完全由java实现的轻量级工具库 eclipse官方封装了 ...

  4. OpenGL开发入门

    1.OpenGL简介: OpenGL ES (OpenGL for Embedded Systems) 是 OpenGL三维图形 API 的子集,针对手机.PDA和游戏主机等嵌入式设备而设计.该API ...

  5. Chromium base库分割字符串SplitString

    前一段时间在工作过程中遇到一个场景需要将http response中的request header中的cookie字段取出并进行解析,但是手头没有解析cookie的工具类,同时cookie的表现就是个 ...

  6. JavaScript高级编程———数据存储(cookie、WebStorage)

    JavaScript高级编程———数据存储(cookie.WebStorage) <script> /*Cookie 读写删 CookieUtil.get()方法根据cookie的名称获取 ...

  7. Asp.Net实现在线网站安装(上)

    在很多年前,笔者在使用z-blog搭建个人部落格的时候,最大的感受就是z-blog在线安装功能! 因为在那个时候,以几K每秒的速度上传一个几M或者十几M的压缩包到虚拟主机上,是一个很痛苦的事情.特别是 ...

  8. drupal 通过hook_menu实现添加菜单

    $items['mypayment/onlinepay']=array( 'title' => '在线充值', 'description' => '在线充值', 'page callbac ...

  9. 转:使用VS Code断点调试PHP

    使用VS Code断点调试PHP vs code 使用一款杰出的轻量级代码编辑器,其中的插件工具不胜枚举而且还在不断增加.使用 vs code 调试 PHP 代码更是方便简洁,下面我们来一起看一下. ...

  10. HTML表单相关

    表单:<input type="text" name="" value="" size="显示字符数" maxle ...