lesson 6: sorting

exercise

Problem:

You are given a zero-indexed array A consisting of n > 0 integers; you must return the number of unique values in array A.

Solution O(nlogn):

First, sort array A; similar values will then be next to each other. Finally, just count the number of distinct pairs in adjacent cells.

def distinct(A):
n = len(A)
A.sort()
result = 1
for k in xrange(1, n):
if A[k] != A[k - 1]: result += 1
return result

The time complexity is O(n log n), in view of the sorting time.

1. Distinct

Compute number of distinct values in an array.

  • 将list保存为set 即可
  • Test score 100%
  • 也可以排序,然后对不同数进行计数,如exercise那样
def solution(A):
# write your code in Python 2.7
Aset = set(A)
return len(Aset)

2. Triangle

Determine whether a triangle can be built from a given set of edges.

https://codesays.com/2014/solution-to-triangle-by-codility/

On one hand, there is no false triangular. Since the array is sorted, we already know A[index] < = A[index+1] <= A[index+2], and all values are positive. A[index] <= A[index+2], so it must be true that A[index] < A[index+1] + A[index+2]. Similarly, A[index+1] < A[index] + A[index+2]. Finally, we ONLY need to check A[index]+A[index+1] > A[index+2] to confirm the existence of triangular.

On the other hand, there is no underreporting triangular. If the inequality can hold for three out-of-order elements, to say, A[index]+A[index+m] > A[index+n], where n>m>1. Again, because the array is sorted, we must have A[index] < = A[index+m-1] and A[index+m+1] <= A[index + n]. So A[index+m-1] +A[index+m] >= A[index]+A[index+m] > A[index+n] >= A[index+m+1]. After simplification, A[index+m-1] +A[index+m] > A[index+m+1]. In other words, if we have any inequality holding for out-of-order elements, we MUST have AT LEAST an inequality holding for three consecutive elements.

def solution(A):
# write your code in Python 2.7
length = len(A)
if length < 3:
return 0
A.sort()
for idx in xrange(0,length -2):
if A[idx]+A[idx + 1] > A[idx + 2]:
return 1
return 0

3. MaxProductOfThree

Maximize A[P] * A[Q] * A[R] for any triplet (P, Q, R).

solution 1

  • O(N)
  • Test score 100% OJ test is O(N * log(N))
  • 考虑到有负数存在, 故乘积最大的三个数,会出现在两种情况:
    • 三个数均是正数,且是三个最大的数
    • 两个负数和一个正数,最大正数和最小的两个负数
def solution(A):
ma1, ma2, ma3 = -1000, -1000, -1000
mi1, mi2 = 1000, 1000
for elem in A:
if elem > ma1:
ma1, ma2, ma3 = elem, ma1, ma2
elif elem > ma2:
ma2, ma3 = elem, ma2
elif elem > ma3:
ma3 = elem if elem < mi1:
mi1,mi2 = elem, mi1
elif elem < mi2:
mi2 = elem
a, b = ma1*ma2*ma3, ma1*mi1*mi2
return a if a > b else b

solution 2

note:

  • just need return the value of the max product,

  • 基于解法一,我们可以先排序,然后直接取,不需要每个比较,相对来说,时间成本稍大

  • so, we can just consider the first or last teiplet, after sort

  • Detected time complexity: O(N * log(N))

def solution(A):
A.sort()
return max(A[0]*A[1]*A[-1], A[-1]*A[-2]*A[-3])

4. NumberOfDiscIntersections

We draw N discs on a plane. The discs are numbered from 0 to N − 1. A zero-indexed array A of N non-negative integers, specifying the radiuses of the discs, is given. The J-th disc is drawn with its center at (J, 0) and radius A[J].

We say that the J-th disc and K-th disc intersect if J ≠ K and the J-th and K-th discs have at least one common point (assuming that the discs contain their borders).

The figure below shows discs drawn for N = 6 and A as follows:

  A[0] = 1
A[1] = 5
A[2] = 2
A[3] = 1
A[4] = 4
A[5] = 0

There are eleven (unordered) pairs of discs that intersect, namely:

  • discs 1 and 4 intersect, and both intersect with all the other discs;
  • disc 2 also intersects with discs 0 and 3.

problem:

Compute the number of intersections in a sequence of discs.

given an array A describing N discs as explained above, returns the number of (unordered) pairs of intersecting discs. The function should return −1 if the number of intersecting pairs exceeds 10,000,000.

Assume that:

  • N is an integer within the range [0..100,000];
  • each element of array A is an integer within the range [0..2,147,483,647].

Complexity:

  • expected worst-case time complexity is O(N*log(N));
  • expected worst-case space complexity is O(N).

思路:

  • 参考csdn

  • stackoverflow

    initially we calculate all start and end points of discs. After go by all line and check count of discs inside current point. If in current point started some discs and intersection count increased by: already active distsc multiplied by count of started in current point (result += t * dps[i]) and count of intersections of started(result += dps[i] * (dps[i] - 1) / 2) eg. if started 5 discs in one of point it will increased by(1+2+3+4+5 intersections, or 5*(5-1) / 2[sum formula]).

  • 构造成区间,[i-A[i],i+A[i]]

    • e.g. A = [1,5,2,1,4,0]
    • => [-1,1],[-4,6],[0,4],[2,4],[0,8],[5,5]
  • 因为我们圆的中心位置在[0,len(A)],e.g. 在上例中 [0,5], 所以起点数组dps计算[0,i-A[i]]的范围,故有max(0,i-A[i])

  • 终点数组不要超过每个圆心的最大值,即小于len(A)-1, 故有min(length-1,i+A[i])

sloution:[100%]

def solution(A):
result = 0
length = len(A)
dps = [0]*length
dpe = [0]*length
for i in xrange(length):
dps[max(0, i-A[i])] += 1
dpe[min(length-1, i+A[i])] += 1
tmp = 0
for i in xrange(length):
if dps[i] > 0:
result += tmp*dps[i]
result += dps[i] * (dps[i] - 1)/2
if result > 10000000:
return -1
tmp += dps[i]
tmp -= dpe[i]
return result

sorting--codility的更多相关文章

  1. Codility NumberSolitaire Solution

    1.题目: A game for one player is played on a board consisting of N consecutive squares, numbered from ...

  2. codility flags solution

    How to solve this HARD issue 1. Problem: A non-empty zero-indexed array A consisting of N integers i ...

  3. HDU Cow Sorting (树状数组)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2838 Cow Sorting Problem Description Sherlock's N (1  ...

  4. GenomicRangeQuery /codility/ preFix sums

    首先上题目: A DNA sequence can be represented as a string consisting of the letters A, C, G and T, which ...

  5. 1306. Sorting Algorithm 2016 12 30

    1306. Sorting Algorithm Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description One of the f ...

  6. 算法:POJ1007 DNA sorting

    这题比较简单,重点应该在如何减少循环次数. package practice; import java.io.BufferedInputStream; import java.util.Map; im ...

  7. U3D sorting layer, sort order, order in layer, layer深入辨析

    1,layer是对游戏中所有物体的分类别划分,如UIlayer, waterlayer, 3DModelLayer, smallAssetsLayer, effectLayer等.将不同类的物体划分到 ...

  8. WebGrid with filtering, paging and sorting 【转】

    WebGrid with filtering, paging and sorting by Jose M. Aguilar on April 24, 2012 in Web Development A ...

  9. ASP.NET MVC WebGrid – Performing true AJAX pagination and sorting 【转】

    ASP.NET MVC WebGrid – Performing true AJAX pagination and sorting FEBRUARY 27, 2012 14 COMMENTS WebG ...

  10. poj 1007:DNA Sorting(水题,字符串逆序数排序)

    DNA Sorting Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 80832   Accepted: 32533 Des ...

随机推荐

  1. 《Java入门第二季》第一章 类和对象

    什么是类和对象 如何定义 Java 中的类 如何使用 Java 中的对象 Java中的成员变量和局部变量1.成员变量:在类中定义,描述构成对象的组件. 2.局部变量:在类的方法中,用于临时保存数据. ...

  2. 隐藏Apche、Nginx、PHP的版本号提高网站安全性

    隐藏Apache版本号 在apache配置文件httpd.conf中,加入以下代码 ServerTokens Prod ServerSignature Off 隐藏Nginx版本号 在nginx的配置 ...

  3. luogu p3371 单源最短路径(dijkstral

    本来我写的对的 我就多手写了个 ios::sync_with_stdio(false); 我程序里面用了cin 还有scanf 本来想偷偷懒 我就说 我查了半天错 根本找不到的啊... 后来交了几次 ...

  4. SpringBoot与Dubbo整合上篇

    最近学习了一下dubbo,是阿里巴巴公司的一个开源服务框架.目前我们公司实现两个不同系统的之间通信,是采用了Oracle的OSB作为服务的管理(即企业服务总线的一种实现),服务提供方在OSB上注册业务 ...

  5. POJ 2262 Goldbach's Conjecture(Eratosthenes筛法)

    http://poj.org/problem?id=2262 题意: 哥德巴赫猜想,把一个数用两个奇素数表示出来. 思路:先用Eratosthenes筛法打个素数表,之后枚举即可. #include& ...

  6. HDU 3572 Task Schedule(最大流判断满流)

    https://vjudge.net/problem/HDU-3572 题意: 有N个作业和M台机器,每个作业都有一个持续时间P,工作的日期为S~E.作业可以断断续续的在不同机器上做,每台机器每次只可 ...

  7. class []的用法

    span[class='test']    =>匹配所有带有class类名test的span标签 span[class *='test']  =>匹配所有包含了test字符串的class类 ...

  8. Mediator(中介者)

    意图: 用一个中介对象来封装一系列的对象交互.中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互. 适用性: 一组对象以定义良好但是复杂的方式进行通信.产生的相互依 ...

  9. [转]VS2015编译的程序在其他机器上缺少msvcp120.dll

    http://www.lai18.com/content/1159618.html 1. 今天分享一个自己在开发过程中遇到的困难. 用VS2015开发了一个windows客户端(win32项目),在自 ...

  10. redis的过期策略以及内存淘汰机制

    redis采用的是定期删除+惰性删除策略. 为什么不用定时删除策略? 定时删除,用一个定时器来负责监视key,过期则自动删除.虽然内存及时释放,但是十分消耗CPU资源.在大并发请求下,CPU要将时间应 ...