BZOJ3625: 小朋友和二叉树
Sol
设 \(f_x\) 表示权值为 \(x\) 的二叉树的个数
设 \(s_x\) 表示是否有 \(x\) 这种权值可以选择
那么
\]
构造
\]
\]
由于 \(s_0=0,f_0=1\)
那么
\(F^2(x)S(x)=F(x)-1\)
所以可以求得
\]
由于 \(F(0)=1,S(0)=0\) 所以
\]
正是因为 \(S(0)=0\) 没有办法求逆
所以化简得到
\]
开根(常数项是 \(1\) 所以不用二次剩余)+求逆即可
# include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn(4e5 + 5);
const int mod(998244353);
const int inv2(499122177);
inline int Pow(ll x, int y) {
register ll ret = 1;
for (; y; y >>= 1, x = x * x % mod)
if (y & 1) ret = ret * x % mod;
return ret;
}
inline void Inc(int &x, int y) {
if ((x += y) >= mod) x -= mod;
}
int a[maxn], b[maxn], c[maxn], w[2][maxn], deg, r[maxn], l;
inline void Init(int n) {
register int i, k, wn, iwn;
for (deg = 1, l = 0; deg < n; deg <<= 1) ++l;
for (i = 0; i < deg; ++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
for (i = 1; i < deg; i <<= 1) {
w[0][0] = w[1][0] = 1;
wn = Pow(3, (mod - 1) / (i << 1)), iwn = Pow(wn, mod - 2);
for (k = 1; k < i; ++k) {
w[0][deg / i * k] = 1LL * w[0][deg / i * (k - 1)] * wn % mod;
w[1][deg / i * k] = 1LL * w[1][deg / i * (k - 1)] * iwn % mod;
}
}
}
inline void NTT(int *p, int opt) {
register int i, j, k, t, wn, x, y;
for (i = 0; i < deg; ++i) if (r[i] < i) swap(p[r[i]], p[i]);
for (i = 1; i < deg; i <<= 1)
for(t = i << 1, j = 0; j < deg; j += t)
for (k = 0; k < i; ++k) {
wn = w[opt == -1][deg / i * k];
x = p[j + k], y = 1LL * wn * p[i + j + k] % mod;
p[j + k] = x + y, p[i + j + k] = x - y;
if (p[j + k] >= mod) p[j + k] -= mod;
if (p[i + j + k] < 0) p[i + j + k] += mod;
}
if (opt == -1) {
wn = Pow(deg, mod - 2);
for (i = 0; i < deg; ++i) p[i] = 1LL * p[i] * wn % mod;
}
}
int n, m, f[maxn], g[maxn], s[maxn];
void Inv(int *p, int *q, int len) {
if (len == 1) {
q[0] = Pow(p[0], mod - 2);
return;
}
Inv(p, q, len >> 1);
register int i, tmp = len << 1;
for (i = 0; i < len; ++i) a[i] = p[i], b[i] = q[i];
Init(tmp), NTT(a, 1), NTT(b, 1);
for (i = 0; i < tmp; ++i) a[i] = 1LL * a[i] * b[i] % mod * b[i] % mod;
NTT(a, -1);
for (i = 0; i < len; ++i) q[i] = (2LL * q[i] + mod - a[i]) % mod;
for (i = 0; i < tmp; ++i) a[i] = b[i] = 0;
}
void Sqrt(int *p, int *q, int len) {
if (len == 1) {
q[0] = sqrt(p[0]);
return;
}
Sqrt(p, q, len >> 1), Inv(q, c, len);
register int i, tmp = len << 1;
for (i = 0; i < len; ++i) a[i] = p[i];
Init(tmp), NTT(a, 1), NTT(c, 1);
for (i = 0; i < tmp; ++i) a[i] = 1LL * a[i] * c[i] % mod;
NTT(a, -1);
for (i = 0; i < len; ++i) q[i] = 1LL * (q[i] + a[i]) % mod * inv2 % mod;
for (i = 0; i < tmp; ++i) a[i] = c[i] = 0;
}
int main() {
register int i, len, v;
scanf("%d%d", &n, &m);
for (i = 1; i <= n; ++i) scanf("%d", &v), ++s[v];
for (len = 1; len <= m; len <<= 1);
for (i = 1; i <= m; ++i) s[i] = 1LL * s[i] * 4 % mod, s[i] = mod - s[i];
s[0] = 1, Sqrt(s, f, len), Inc(f[0], 1), Inv(f, g, len);
for (i = 0; i < len; ++i) g[i] = 2LL * g[i] % mod;
for (i = 1; i <= m; ++i) printf("%d\n", g[i]);
return 0;
}
BZOJ3625: 小朋友和二叉树的更多相关文章
- 2019.01.01 bzoj3625:小朋友和二叉树(生成函数+多项式求逆+多项式开方)
传送门 codeforces传送门codeforces传送门codeforces传送门 生成函数好题. 卡场差评至今未过 题意简述:nnn个点的二叉树,每个点的权值KaTeX parse error: ...
- [Codeforces438E][bzoj3625] 小朋友和二叉树 [多项式求逆+多项式开根]
题面 传送门 思路 首先,我们把这个输入的点的生成函数搞出来: $C=\sum_{i=0}^{lim}s_ix^i$ 其中$lim$为集合里面出现过的最大的数,$s_i$表示大小为$i$的数是否出现过 ...
- 【bzoj3625】【xsy1729】小朋友和二叉树
[bzoj3625]小朋友与二叉树 题意 我们的小朋友很喜欢计算机科学,而且尤其喜欢二叉树. 考虑一个含有n个互异正整数的序列c[1],c[2],...,c[n].如果一棵带点权的有根二叉树满足其所有 ...
- 【BZOJ3625/CF438E】小朋友和二叉树(多项式求逆,多项式开方)
[BZOJ3625/CF438E]小朋友和二叉树(多项式求逆,多项式开方) 题面 BZOJ CodeForces 大致题意: 对于每个数出现的次数对应的多项式\(A(x)\) 求\[f(x)=\fra ...
- BZOJ 3625: [Codeforces Round #250]小朋友和二叉树
3625: [Codeforces Round #250]小朋友和二叉树 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 304 Solved: 13 ...
- 「BZOJ 3645」小朋友与二叉树
「BZOJ 3645」小朋友与二叉树 解题思路 令 \(G(x)\) 为关于可选大小集合的生成函数,即 \[ G(x)=\sum[i\in c ] x^i \] 令 \(F(x)\) 第 \(n\) ...
- 【CF438E】小朋友和二叉树 解题报告
[CF438E]小朋友和二叉树 Description 我们的小朋友很喜欢计算机科学,而且尤其喜欢二叉树. 考虑一个含有\(n\)个互异正整数的序列\(c_1,c_2,\dots,c_n\). ...
- [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆)
[BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆) 题面 一棵二叉树的所有点的点权都是给定的集合中的一个数. 让你求出1到m中所有权 ...
- 【BZOJ3625】【CF438E】小朋友和二叉树 NTT 生成函数 多项式开根 多项式求逆
题目大意 考虑一个含有\(n\)个互异正整数的序列\(c_1,c_2,\ldots ,c_n\).如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合\(\{c_1,c_2,\ldots ,c_n\ ...
随机推荐
- python3.6使用scrapy报错
用python做爬虫的,肯定熟悉scrapy,不过新手安装总是会遇到各种奇葩错误. 错误一:building 'twisted.test.raiser' extensionerror: Microso ...
- javascript举例介绍事件委托的典型使用场景
在了解什么是DOM事件以及给DOM事件绑定监听器的几种方法后,我们来谈谈事件委托. 1. e.target 和 e.currentTarget 当我们给目标元素target 绑定一个事件监听器targ ...
- 对drf视图的理解
视图说明 1. 两个基类 1)APIView rest_framework.views.APIView APIView是REST framework提供的所有视图的基类,继承自Django的View父 ...
- github上关于campbell数据采集的一些代码。
数据自动采集: https://github.com/USGS-OWI/deployer-campbell program that reads loggernet files and refor ...
- TP5 隐藏入口文件 index.php
找到public下的.htaccess <IfModule mod_rewrite.c> Options +FollowSymlinks -Multiviews RewriteEngine ...
- 利用flask-sqlacodegen快速导入ORM表结构
利用flask-sqlacodegen快速导入ORM表结构 友情提示:如果是使用pymysql请预先pip install 哦~ 这是window下使用virtualenv环境下执行的 Linux用户 ...
- Mac下安装JDK(Mac 10.12)
1.到官网http://www.oracle.com/technetwork/java/javase/downloads/index.html下载JDK 2.安装 打开dmg包 3.测试 在终端上输入 ...
- hibernate_Session接口_load_get
hibernate读取数据库内容,用 1,session.get(Class类型,主键); 立马发出sql语句.从数据库中取出值装到对象里去 2,session.load(Class类型,主键); 从 ...
- 【分步详解】两个有序数组中的中位数和Top K问题
(这也是一道leetcode的经典题目:<LeetCode>解题笔记:004. Median of Two Sorted Arrays[H] 问题介绍 这是个超级超级经典的分治算法!!这个 ...
- Javac之Environment
关于Env的源代码如下: /** A class for environments, instances of which are passed as * arguments to tree visi ...