【容斥原理,莫比乌斯反演】用容斥替代莫比乌斯反演第二种形式解决gcd统计问题
名字虽然很长。但是其实很简单,对于这一类问题基本上就是看你能不能把统计的公式搞出来(这时候需要一个会推公式的队友)
来源于某次cf的一道题,盼望上紫的我让潘学姐帮我代打一道题,她看了看跟我说了题解,用反演写的,然后……还是错了23333。赛后题解给出的是用容斥原理解决问题,但是我并看不懂学姐的公式,也还不懂莫比乌斯反演的第二种形式。直到最近刚看,才恍然大悟。
这类问题的特点是,给一个集合,问所有子集的w(gcd(某个子集))的和问题(w表示某个函数,一般是跟子集长度有关)。
可以做出两个函数。
一个是 f(x)= w(gcd(子集)=x)的答案。
一个是g(x)=w(gcd(子集)=k*x)的答案。(k≥1)。而且g(x)要求可以直接求出来。
显然g(x)=∑f(kx)(k≥1)。
然后这个东西可以反演,变成
f(x)=∑x|d u(d/x)*g(d)。
然后就是答案就是ans=∑f(x) (或者满足某种性质的x)
而如果时间复杂度要求是nlogn的,然后容斥理解,就很简单了。
f(x)=g(x)-∑f(kx) (k大于等于2),通过倒序处理答案,调和级数复杂度解决了问题。
当然容斥也有不足的地方,比如遇到低于nlogn的复杂度,或者需要预处理答案的那种(基本上就是遇到杜教课件里面的两种情况,1空间换时间,2 10^10次,就得考虑用反演变换化简了)
但是一旦容斥可以写,问题就变成如果搞出w函数。就变成数学公式,就可以甩锅给队友。而且切起来一气呵成。
题目合集上我在vjudge找到了一场练习,除掉几道八中上面的,其他基本写掉了,而且大部分可以用容斥写,感觉真心作弊。
https://vjudge.net/contest/139539#overview
另外这就是开头说的cf的某道题:http://codeforces.com/contest/839/problem/D
【容斥原理,莫比乌斯反演】用容斥替代莫比乌斯反演第二种形式解决gcd统计问题的更多相关文章
- [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演
//待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...
- 【LOJ#6374】网格(二项式反演,容斥)
[LOJ#6374]网格(二项式反演,容斥) 题面 LOJ 要从\((0,0)\)走到\((T_x,T_y)\),每次走的都是一个向量\((x,y)\),要求\(0\le x\le M_x,0\le ...
- BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 4493 Solved: 2695[Submit][Statu ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- hdu1695(容斥 or 莫比乌斯反演)
刚开始看题,想了一会想到了一种容斥的做法.复杂度O( n(3/2) )但是因为题目上说有3000组测试数据,然后吓尿.完全不敢写. 然后想别的方法. 唉,最近精神有点问题,昨天从打完bc开始想到1点多 ...
- 洛谷 P2522 [HAOI2011]Problem b (莫比乌斯反演+简单容斥)
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...
- 【CF900D】Unusual Sequences 容斥(莫比乌斯反演)
[CF900D]Unusual Sequences 题意:定义正整数序列$a_1,a_2...a_n$是合法的,当且仅当$gcd(a_1,a_2...a_n)=x$且$a_1+a_2+...+a_n= ...
- JZYZOJ1518 [haoi2011]b 莫比乌斯反演 分块 容斥
http://172.20.6.3/Problem_Show.asp?id=1518最开始只想到了n^2的写法,肯定要超时的,所以要对求gcd的过程进行优化.首先是前缀和容斥,很好理解.第二个优化大致 ...
- 洛谷P4318 完全平方数(容斥,莫比乌斯反演)
传送门 求第$k$个没有完全平方数因数的数 一开始是想筛一波莫比乌斯函数,然后发现时间复杂度要炸 于是老老实实看了题解 一个数的排名$k=x-\sum_{i=1}^{x}{(1-|\mu(i)|)}$ ...
随机推荐
- XAF-如何调整按钮的显示顺序
在 XAF 应用程序用户界面,按钮位于按钮容器内.您可以使用 ActionBase.Category属性和应用程序模型 ActionDesign |ActionToContainerMapping 节 ...
- appium+python自动化☞环境搭建
前言:appium可以说是做app最火的一个自动化框架,它的主要优势是支持android和ios,另外脚本语言也是支持java和Python.略懂Python,所以接下来的教程是 appium+pyt ...
- JAVA学习笔记--简介几个常见关键字static、final、this、super
一.static static(静态的),可以放在类.方法.字段之前. 通常,当创建类时,就是在描述那个类的外观与行为.除非用 new 创建那个类的对象,否则,实际上并未获得任何对象.执行 new 来 ...
- PytorchZerotoAll学习笔记(二)--梯度下降之手动求导
梯度下降算法: 待优化的损失值为 loss,那么我们希望预测的值能够很接近真实的值 y_pred ≍ y_label 我们的样本有n个,那么损失值可以由一下公式计算得出: 要使得los ...
- Logistic回归 逻辑回归 练习——以2018建模校赛为数据源
把上次建模校赛一个根据三围将女性分为四类(苹果型.梨形.报纸型.沙漏)的问题用逻辑回归实现了,包括从excel读取数据等一系列操作. Excel的格式如下:假设有r列,则前r-1列为数据,最后一列为类 ...
- centos 7.2 安装apache,mysql,php5.6
安装Apache.PHP.Mysql.连接Mysql数据库的包: yum -y install httpd yum -y install php yum -y install php-fpm yum ...
- Scrum立会报告+燃尽图(十一月十九日总第二十七次):功能开发与修复上一阶段bug
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2284 项目地址:https://git.coding.net/zhang ...
- 欢迎来怼—第二次Scrum会议
一.小组信息 队名:欢迎来怼小组成员队长:田继平成员:李圆圆,葛美义,王伟东,姜珊,邵朔,冉华小组照片 二.开会信息 时间:2017/10/14 18:30~18:47,总计17min.地点:东北师范 ...
- 团队Alpha冲刺(九)
目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:凯琳 组员6:翟丹丹 组员7:何家伟 组员8:政演 组员9:黄鸿杰 组员10:刘一好 组员11:何宇恒 展示 ...
- prototype.js中Function.prototype.bind方法浅解
prototype.js中的Function.prototype.bind方法: Function.prototype.bind = function() { var __method = this; ...