显然我们可以先把len(Ti)+len(Tj)的值先算出来,再把LCP减去。所有len(Ti)+len(Tj)的值为n*(n-1)*(n+1)/2,这个随便在纸上画一画就可以算出来的。

接下来问题就是如何把LCP减去。我们先用后缀数组把height求出来,当有一段区间l~r,height[i]为height[l]~height[r]中的最小值,那么随便取rk[l]~rk[r]中的两个后缀,他们的LCP则都是height[i],这个很好理解吧。那么l~r这个区间里有(l-i+1)*(r-i+1)对后缀,所以我们最后的答案就要减去2*height[i]*(l-i+1)*(r-i+1)【1≤i≤n】。

然后就是如何求出每一个i的l~r了,暴力枚举+RMQ显然不行,那我们就用一个单调栈,栈里存着i前面height值比height[i]小的height值的编号,记为j,如果height[j]比height[i]大那么就弹出,那么这段区间的左端点则为栈顶的j+1,右端点同理。这样我们就可以求出每个height的l和r了。

奇丑无比的代码如下:

var
s:ansistring;
i:longint;
n,m,l,r,ans,top:int64;
rk,trk,sa,tsa,sum,h,ll,rr,st:array[..]of int64; procedure suffix;
var
i,j,p:longint;
begin
for i:= to n do begin trk[i]:=ord(s[i]);inc(sum[trk[i]]);end;
for i:= to do inc(sum[i],sum[i-]);
for i:=n downto do begin sa[sum[trk[i]]]:=i;dec(sum[trk[i]]);end;
rk[sa[]]:=;p:=;
for i:= to n do begin if trk[sa[i]]<>trk[sa[i-]] then inc(p);rk[sa[i]]:=p;end;
m:=p;j:=;
while m<n do
begin
move(rk,trk,sizeof(rk));fillchar(sum,sizeof(sum),);p:=;
for i:=n-j+ to n do begin inc(p);tsa[p]:=i;end;
for i:= to n do if sa[i]>j then begin inc(p);tsa[p]:=sa[i]-j;end;
for i:= to n do begin rk[i]:=trk[tsa[i]];inc(sum[rk[i]]);end;
for i:= to n do inc(sum[i],sum[i-]);
for i:=n downto do begin sa[sum[rk[i]]]:=tsa[i];dec(sum[rk[i]]);end;
rk[sa[]]:=;p:=;
for i:= to n do
begin
if (trk[sa[i]]<>trk[sa[i-]])or(trk[sa[i]+j]<>trk[sa[i-]+j])then inc(p);
rk[sa[i]]:=p;
end;
m:=p;j:=j*;
end;
h[]:=;p:=;
for i:= to n do
begin
if rk[i]= then continue;
j:=sa[rk[i]-];
while s[i+p]=s[j+p] do inc(p);
h[rk[i]]:=p;
if p> then dec(p);
end;
end; begin
readln(s);
n:=length(s);
s:=s+' ';
suffix;
ans:=n*(n-)*(n+)div ;
h[]:=-maxlongint;
for i:= to n do
begin
while h[i]<=h[st[top]] do dec(top);
if st[top]= then ll[i]:=
else ll[i]:=st[top]+;
inc(top);
st[top]:=i;
end;
h[n+]:=-maxlongint;top:=;st[]:=n+;
for i:=n downto do
begin
while h[i]<h[st[top]] do dec(top);
if st[top]=n+ then rr[i]:=n
else rr[i]:=st[top]-;
inc(top);
st[top]:=i;
end;
for i:= to n do
ans:=ans-*(i-ll[i]+)*(rr[i]-i+)*h[i];
writeln(ans);
end.

[bzoj3238]差异(后缀数组+单调栈)的更多相关文章

  1. 【BZOJ-3238】差异 后缀数组 + 单调栈

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1561  Solved: 734[Submit][Status] ...

  2. 【BZOJ3238】[Ahoi2013]差异 后缀数组+单调栈

    [BZOJ3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...

  3. BZOJ 3238: [Ahoi2013]差异 [后缀数组 单调栈]

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2326  Solved: 1054[Submit][Status ...

  4. [AHOI2013] 差异 - 后缀数组,单调栈

    [AHOI2013] 差异 Description 求 \(\sum {len(T_i) + len(T_j) - 2 lcp(T_i,T_j)}\) 的值 其中 \(T_i (i = 1,2,... ...

  5. bzoj3238 [Ahoi2013]差异 后缀数组+单调栈

    [bzoj3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...

  6. BZOJ3238 [Ahoi2013]差异 【后缀数组 + 单调栈】

    题目链接 BZOJ3238 题解 简单题 经典后缀数组 + 单调栈套路,求所有后缀\(lcp\) #include<iostream> #include<cstdio> #in ...

  7. BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈

    BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao ...

  8. 【BZOJ3879】SvT 后缀数组+单调栈

    [BZOJ3879]SvT Description (我并不想告诉你题目名字是什么鬼) 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个询问,我们给出若干 ...

  9. BZOJ_3879_SvT_后缀数组+单调栈

    BZOJ_3879_SvT_后缀数组+单调栈 Description (我并不想告诉你题目名字是什么鬼) 有一个长度为n的仅包含小写字母的字符串S,下标范围为[1,n]. 现在有若干组询问,对于每一个 ...

  10. BZOJ.4199.[NOI2015]品酒大会(后缀数组 单调栈)

    BZOJ 洛谷 后缀自动机做法. 洛谷上SAM比SA慢...BZOJ SAM却能快近一倍... 显然只需要考虑极长的相同子串的贡献,然后求后缀和/后缀\(\max\)就可以了. 对于相同子串,我们能想 ...

随机推荐

  1. JavaScript查找元素的方法

    1.根据id获取元素 document.getElementById("id属性的值"); 2.根据标签名字获取元素 document.getElementsByTagName(& ...

  2. Tensorflow基本开发架构

    Tensorflow基本开发架构 先说句题外话, 这段时间一直研究爬虫技术,主要目的是为将来爬取训练数据做准备,同时学习python编程.这一研究才发现,python的开发资源实在是太丰富了,所有你能 ...

  3. UTF-8编码下'\u7528\u6237'转换为中文汉字'用户'

    UTF-8编码下'\u7528\u6237'转换为中文'用户' 一.前言 有过多次,在开发项目中遇见设置文件编码格式为UTF-8,但是打开该文件出现类似\u7528这样的数据,看也看不懂,也不是平常见 ...

  4. Elasticsearch.Net 异常:[match] query doesn't support multiple fields, found [field] and [query]

    用Elasticsearch.Net检索数据,报异常: )); ElasticLowLevelClient client = new ElasticLowLevelClient(settings); ...

  5. HP VC模块Shared uplink Sets配置参考

    首先配置MAC地址的分配方式 在左侧导航栏中,点解"MAC Addresses" 选择VC分配MAC地址,并且选择一个合适的地址段,点击"Apply"继续 在弹 ...

  6. 1035 Password (20 分)(字符串)

    注意下单复数 #include<bits/stdc++.h> using namespace std; pair<string,string>pa; int main() { ...

  7. 关于kv的jch分片存储

    确定节点同步一致 节点启动之后,先获取本地的addrbook里面的节点信息 根据获取的addrbook里面的节点信息进行校验(向addrbook里面的节点发送hash消息确认,如果都一样,则可以广播数 ...

  8. 转:为什么说招到合适的人比融到钱更加重要 - Hiring Great Talent is More Important Than Fund Raising

    我在猎头行业工作了 20 多年,一直在帮助创业公司招聘优秀的人才.我服务过的客户既有 VC 投资的初创企业,也有即将 IPO 的公司.我和 200 多个 VC 合作过,也见过 300 多个客户失败的案 ...

  9. python打印图形大全(详解)

    ,): shixin=chr() print(shixin) -------------------结果:2) for i in range(0,10): shixin=chr(9679) print ...

  10. Alpha阶段贡献分分配

    作业要求[https://edu.cnblogs.com/campus/nenu/2018fall/homework/2281] 要求1 每位组员的贡献分值 徐常实:14 张帅:13 王硕:12 赵佳 ...