题目链接:树的计数

  这道题好神啊……正好有人讲了这道题,那么我就写掉吧……

  首先,为了方便考虑,我们可以把节点重标号,使得\(bfs\)序变成\(1,2,3,\dots,n\),那么显然树的深度就是\(dep_n\)。

  然后,我们来考虑一下\(dfs\)序和\(bfs\)序的性质。设\(dfs\)序中的第\(i\)个点为\(d_i\),那么显然有\(dep_{d_{i+1}} \le dep_{d_i}+1\)。由于我们已经进行了重标号,那么通过\(bfs\)序,我们可以得到\(dep_i \le dep_{i+1} \le dep_i+1\)。令\(pos_i\)表示节点\(i\)在\(dfs\)序中出现的位置,那么当\(dep_i=dep_{i+1}\)时,我们可以得到\(pos_i<pos_{i+1}\)。因为我们是按照\(bfs\)序编号的,所以对于同一深度的点,越早被\(dfs\)到编号就越小。

  所以,我们建立一个数组\(s_i\),\(s_i=1\)表示\(dep_{i+1}=dep_i+1\),\(s_i=0\)表示\(dep_{i+1}=dep_i\),那么显然\(s_1=1\)。并且当\(pos_i>pos_{i+1}\)时,我们可以推出\(s_i=1\)。因为上一段中提到了,如果\(dep_i=dep_{i+1}\),则有\(pos_i<pos_{i+1}\)。

  然后,我们接着考虑\(dfs\)序的限制。如果\(d_i<d_{i+1}\),由于\(dep_{d_{i+1}}-dep_{d_i} \le 1\),我们可以得到一个式子:

\[dep_{d_{i+1}}-dep_{d_i}=\sum_{j=d_i}^{d_{i+1}-1}s_j\]

  于是我们可以得到一堆的约束条件。如果等号右边已经是\(1\)了,那么这段区间的未被确定的\(s_j\)就都是\(0\)了。在这种情况下,若\(d_i \neq 1\),则\(d_i+1<d_{i+1}\)。所以在另外一种情况下一定有\(d_i+1=d_{i+1}\),也就意味着这个条件没用了。所以剩下的未确定的变量都有可能为\(1\),而这些变量的取值和其他变量的取值无关,取到\(1\)的概率是\(0.5\),对\(dep_n\)贡献为\(0.5\)。

  最后,让我们来回顾一下算法流程:

  1.确定所有的\(s_i\)必定等于\(1\)的位置

  2.找出所有的限制条件,限制某些位置必须为\(0\)

  3.剩下的未被限制的位置对答案贡献为\(0.5\)。

  于是这道题就愉快地解决辣!(虽然我可能还是没有讲清楚)

  参考博客:戳这里

  下面贴代码:

  1. #include<iostream>
  2. #include<cstdio>
  3. #include<cstring>
  4. #include<algorithm>
  5. #include<cmath>
  6. #define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
  7. #define maxn 200010
  8.  
  9. using namespace std;
  10. typedef long long llg;
  11.  
  12. int d[maxn],n,a[maxn],s[maxn];
  13. double ans;
  14.  
  15. int getint(){
  16. int w=0;bool q=0;
  17. char c=getchar();
  18. while((c>'9'||c<'0')&&c!='-') c=getchar();
  19. if(c=='-') c=getchar(),q=1;
  20. while(c>='0'&&c<='9') w=w*10+c-'0',c=getchar();
  21. return q?-w:w;
  22. }
  23.  
  24. int main(){
  25. File("a");
  26. n=getint(); ans=1; s[1]++,s[2]--;
  27. for(int i=1;i<=n;i++) a[d[i]=getint()]=i;
  28. for(int i=1;i<=n;i++) d[a[getint()]]=i;
  29. for(int i=1;i<=n;i++) a[d[i]]=i;
  30. for(int i=2;i<=n;i++) if(a[i]<a[i-1]) s[i-1]++,s[i]--,ans++;
  31. for(int i=2;i<=n;i++) if(d[i-1]+1<d[i]) s[d[i-1]]++,s[d[i]]--;
  32. for(int i=1,j=0;i<n;i++) j+=s[i],ans+=((bool)(!j))*0.5;
  33. printf("%.3lf",ans+1);
  34. return 0;
  35. }

  BZOJ提交地址:BZOJ 3244 树的计数

UOJ #122 【NOI2013】 树的计数的更多相关文章

  1. [UOJ#122][NOI2013]树的计数

    [UOJ#122][NOI2013]树的计数 试题描述 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的 DFS 序以及 BFS 序.两棵不同的树的 DFS 序 ...

  2. 【BZOJ3244】【UOJ#122】【NOI2013]树的计数

    NOI都是酱的题怎么玩啊,哇.jpg 原题: 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序.两棵不同的树的DFS序有可能相同,并且它们的 ...

  3. 【uoj122】 NOI2013—树的计数

    http://uoj.ac/problem/122 (题目链接) 题意 给出一棵树的dfs序和bfs序,保证一定可以构成一棵树.问构成的树的期望深度. Solution 这是一个悲伤的故事,我YY的东 ...

  4. NOI2013 树的计数

    题目:http://uoj.ac/problem/122 85%做法: 动态规划. 首先重编号,BFS序变成1...n,然后DFS序相应重编号. 记pos[i]为i号点在DFS中的位置,即pos[d[ ...

  5. 3244: [Noi2013]树的计数 - BZOJ

    Description 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序.两棵不同的树的DFS序有可能相同,并且它们的BFS序也有可能相同, ...

  6. bzoj 3244: [Noi2013]树的计数

    Description 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序.两棵不同的树的DFS序有可能相同,并且它们的BFS序也有可能相同, ...

  7. BZOJ3244 NOI2013树的计数(概率期望)

    容易发现的一点是如果确定了每一层有哪些点,树的形态就确定了.问题变为划分bfs序. 考虑怎样划分是合法的.同一层的点在bfs序中出现顺序与dfs序中相同.对于dfs序中相邻两点依次设为x和y,y至多在 ...

  8. [BZOJ3244][NOI2013]树的计数

    这题大家为什么都写O(NlogN)的算法呢?…… 让本蒟蒻来写一个O(N)的吧…… 首先还是对BFS序和DFS序重编号,记标好的DFS序为d[1..n].令pos[x]为x在d[]中出现的位置,即po ...

  9. [bzoj3244][noi2013]树的计数 题解

    UPD: 那位神牛的题解更新了,在这里. ------------------------------------------------------------------------------- ...

  10. BZOJ3244/UOJ122 [Noi2013]树的计数

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

随机推荐

  1. HTML标签img--改变图片尺寸

    转自:https://blog.csdn.net/u012377333/article/details/50508484 1.统一大小? 我的网页上面有许多的图片,有的大,有的小,我想如果图片大的实现 ...

  2. angularJS的过滤器!

    angularJS过滤器: filter currency date filter json limitTo lowercase number orderBy uppercase ...... Fil ...

  3. MYSQL创建数据表!

    几个常见的建表原则: a,表都加前缀b,所有的字段选择最小的数据类型,如id可以使用mediumint比INT节省25%的空间c,尽量所有的字段都设置为NOT NULL的,这样能让速度更快d,为合适的 ...

  4. Haskell中cabal install glib遇到的问题

    1. 运行命令cabal install glib时出现错误: Cannot find gtk2hsC2hs Please install `gtk2hs-buildtools` first and ...

  5. I/O排查命令

    I/O可以说是问题大户,线上的问题经常都是它引起的,很多人却不知道怎么定位这种问题.今天简单介绍一下,在此抛砖引玉. 此类问题我们一般分三步定位:按系统级I/O.进程级I/O.业务级I/O定位即可,一 ...

  6. C# WinForm实现任务栏程序图标闪烁

    相信大家在用QQ的时候都会知道,你打开了QQ聊天窗口,如果窗口不是当前激活的窗口的话,收到QQ消息时,任务栏(不是托盘图标)上的图标会闪一下变成黄色(Win7默认主题下),用以通知用户有消息进来了,之 ...

  7. openstack配置域名访问

    #openstack配置域名访问 openstack pike 安装 目录汇总 http://www.cnblogs.com/elvi/p/7613861.html #主要是在默认配置的基础上,做了个 ...

  8. MAVEN项目(仓库中没有jar包)

    E:\workspace\.metadata\.plugins\org.eclipse.wst.server.core\tmp0\wtpwebapps\bajie\WEB-INF\lib 把jar包放 ...

  9. 邮件服务器Postfix的管理 重启php-fpm

    Postfix邮件系统安装与配置:Postfix,Cyrus-IMAP,Cyrus-sasl,Dovecot和SPFhttp://www.freehao123.com/postfix-cyrus/Ce ...

  10. DataFrames与RDDs的相互转换

    Spark SQL支持两种RDDs转换为DataFrames的方式 使用反射获取RDD内的Schema     当已知类的Schema的时候,使用这种基于反射的方法会让代码更加简洁而且效果也很好. 通 ...