Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101
莫比乌斯反演
1101: [POI2007]Zap
设 \(f(i)\) 表示 \((x,y)\) \(x\in [1,a],y\in [1,b]\) 满足 \(gcd(x,y)=i\) 的对数
那么答案就是 \(f(d)\)
构造一个函数 \(g(i)\) 表示 \((x,y)\) \(x\in [1,a],y\in [1,b]\) 满足 \(gcd(x,y)|i\) 的对数
于是 \(g\) 与 \(f\) 满足关系式
\(g(i)=\sum\limits_{i|k}f(k)\)
满足莫比乌斯反演的第二种情况
于是套公式反演得
\(f(i)=\sum\limits_{i|k}\mu(\frac {k}{i})g(k)\)
对于 \(g(i)\) 考虑 \(gcd(x,y)|i\) 即 \(x\) 与 \(y\) 都有 \(i\) 这个因子
那么 \(x\) 有 \([\frac{a}{i}]\) 个取值 \(y\) 有 \([\frac{b}{i}]\) 个取值
\(g(i)=[\frac{a}{i}]\times[\frac{b}{i}]\)
于是答案
\[
\begin{aligned}
ans=f(d)&=\sum\limits_{d|k}\mu(\frac {k}{d})g(k)\\
&=\sum\limits_{d|k}\mu(\frac {k}{d})[\frac{a}{k}]\times[\frac{b}{k}]
\end{aligned}
\]
设 \(t=\frac{k}{d},k=d\times t;\)
\[
\begin{aligned}
ans=\sum\limits_{t=1}^{min([\frac{a}{d}],[\frac{b}{d}])}\mu(t)[\frac{\frac{a}{t}}{d}][\frac{\frac{b}{t}}{d}]
\end{aligned}
\]
筛一下 \(\mu(i)\)
于是就可以做到 \(O(n\times t)\)
但是效率不行呀
观察到一个形似 \(\sum\limits_{i=1}^{i\le n}[\frac{x}{i}]\) 的式子。
整除分块:(选自他人博客,但是找不到了博客地址了QAQ)
整除分块可以做到 \(O(\sqrt{n}):\)
正确性证明
开始时左端点是 \(1\) 显然是没有问题的,而以后的每一次操作 \(L=R+1\),因此,我们只需要证明每次的 \(R\) 都为正确的即可。
首先\([\frac {n}{i}]\)一定是属于该除数区间的,所以我们只需要证明该数为区间上界。
反证法。设X=\([\frac {n}{i}]\)不是我们想要得到的 \(R\),那么至少有 \(X+1\)属于答案区间。
于是有\([\frac{N}{X+1}⌋=i\),因为是下取整,于是有\(N≥i\times (X+1)\),于是有 \([\frac{N}{i}]≥([\frac{i×(X+1)}{i}]=X+1)\)
而根据定义有 \(X=[\frac{N}{i}]\),于是有 \(X≥X+1\),与事实相悖。
复杂度证明
分情况讨论。
当所选除数 \(\le \sqrt{N}\) 时,显然这一部分的除数区间个数不会超过 \(\sqrt{N}\) 个。
当所选除数\(\geq \sqrt{N}\) 时,得到的商 \(\le \sqrt{N}\),商不超过 \(\sqrt{N}\) 种,所以除数区间也不会超过 \(\sqrt{N}\) 个。
于是总时间复杂度 \(O(\sqrt{N})\)。
Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块的更多相关文章
- BZOJ1101: [POI2007]Zap(莫比乌斯反演)
1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2951 Solved: 1293[Submit][Status ...
- [P4450] 双亲数 - 莫比乌斯反演,整除分块
模板题-- \[\sum\limits_{i=1}^a\sum\limits_{j=1}^b[(i,j)=k] = \sum\limits_{i=1}^a\sum\limits_{j=1}^b[k|i ...
- [POI2007]ZAP-Queries (莫比乌斯反演+整除分块)
[POI2007]ZAP-Queries \(solution:\) 唉,数论实在有点烂了,昨天还会的,今天就不会了,周末刚证明的,今天全忘了,还不如早点写好题解. 这题首先我们可以列出来答案就是: ...
- 【BZOJ1101】Zap [莫比乌斯反演]
Zap Time Limit: 10 Sec Memory Limit: 162 MB[Submit][Status][Discuss] Description 对于给定的整数a,b和d,有多少正整 ...
- 1101: [POI2007]Zap(莫比乌斯反演)
1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MB Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定 ...
- 莫比乌斯反演&整除分块学习笔记
整除分块 用于计算$\sum_{i=1}^n f(\lfloor{n/i} \rfloor)*i$之类的函数 整除的话其实很多函数值是一样的,对于每一块一样的商集中处理即可 若一个商的左边界为l,则右 ...
- 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)
题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...
- BZOJ 1101: [POI2007]Zap( 莫比乌斯反演 )
求 answer = ∑ [gcd(x, y) = d] (1 <= x <= a, 1 <= y <= b) . 令a' = a / d, b' = b / d, 化简一下得 ...
- 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块
https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...
随机推荐
- 如何在Linux系统通过命令行生成随机文件
版权声明:本文由胡恒威原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/86 来源:腾云阁 https://www.qclou ...
- mysql导出csv文件excel打开后数字用科学计数法显示且低位变0的解决方法
Excel显示数字时,如果数字大于12位,它会自动转化为科学计数法:如果数字大于15位,它不仅用于科学技术费表示,还会只保留高15位,其他位都变0. Excel打开csv文件时,只要字段值都是数字,它 ...
- c# SQL Server数据库操作-数据适配器类:SqlDataAdapter
SqlDataAdapter类主要在MSSQL与DataSet之间执行数据传输工具,本节将介绍如何使用SqlDataAdapter类来填充DataSet和MSSQL执行新增.修改..删除等操作. 功能 ...
- android 点九工具介绍
1=============================9.png简介:“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png android平台有多种不同的 ...
- Redis对于key的操作命令
del key1 key2 ... Keyn 作用: 删除1个或多个键 返回值: 不存在的key忽略掉,返回真正删除的key的数量 rename key newkey 作用: 给key赋一个新的ke ...
- 170607、SQL Select语句完整的执行顺序
SQL Select语句完整的执行顺序: 1.from子句组装来自不同数据源的数据: 2.where子句基于指定的条件对记录行进行筛选: 3.group by子句将数据划分为多个分组: 4.使用聚集函 ...
- IIS 6.0上部署ASP.NET MVC2.0
在IIS7.5及8.0上部署都没有成功,对于身份验证会出现问题,据说是要安装什么东西,在这里说下IIS6.0的配置吧,下面是使用.net 4.0,自己可以选择所需的版本. 再此之前先确定web是用到了 ...
- hibernate基于注解实现映射关系的配置
关联关系的配置步骤 ①要理清楚管理关系 ②确定管理依赖关系的哪一方 1一对一例如:person 和IdCard ①确定依赖关系:一对一 ②依赖关系由person类管理代码如下: person: @En ...
- CodeForces 19D Points (线段树+set)
D. Points time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...
- Django - 常用配置
一.logging配置 Django项目常用的logging配置 settings.py LOGGING = { 'version': 1, 'disable_existing_loggers': F ...